References

References

Appropriate References

Physics code

Topical Area

Required citation

CGYRO

gyrokinetic simulation

[CBB16]

GYRO

gyrokinetic simulation

[CW03b]

NEO

neoclassical simulation

[BC08, BC12]

TGLF

transport model

[SKW07, SK10]

TGYRO

profile evolution

[CHW+09]

[AGT+22]

C. Angioni, T. Gamot, G. Tardini, E. Fable, T. Luda, N. Bonanomi, C.K. Kiefer, G.M. Staebler, the ASDEX Upgrade Team, and the EUROfusion MST1 Team. Confinement properties of L-mode plasmas in ASDEX Upgrade and full-radius predictions of the TGLF transport model. Nucl. Fusion, 62:066015, 2022. doi:10.1088/1741-4326/ac592b.

[APP+09]

C. Angioni, A.G. Peeters, G.V. Pereverzev, A. Bottino, J. Candy, R. Dux, E. Fable, T. Hein, and R.E. Waltz. Gyrokinetic simulations of impurity, He ash and α particle transport and consequences on ITER transport modelling. Nucl. Fusion, 49:055013, 2009.

[ACB20]

R. Arbon, J. Candy, and E.A. Belli. Rapidly-convergent flux-surface shape parameterization. Plasma Phys. Control. Fusion, 63:012001, 2020. doi:10.1088/1361-6587/abc63b.

[BH96a]

M.A. Beer and G.W. Hammett. Bounce averaged trapped electron fluid equations for plasma turbulence. Phys. Plasmas, 3:4018, 1996.

[BH96b]

M.A. Beer and G.W. Hammett. Toroidal gyrofluid equations for simulations of tokamak turbulence. Phys. Plasmas, 3:4046, 1996.

[BC08]

E.A. Belli and J. Candy. Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics. Plasma Phys. Control. Fusion, 50:095010, 2008. doi:10.1088/0741-3335/50/9/095010.

[BC09]

E.A. Belli and J. Candy. An Eulerian method for the solution of the multi-species drift-kinetic equation. Plasma Phys. Control. Fusion, 51:075018, 2009.

[BC12]

E.A. Belli and J. Candy. Full linearized Fokker-Planck collisions in neoclassical transport simulations. Plasma Phys. Control. Fusion, 54:015015, 2012.

[BC17]

E.A. Belli and J. Candy. Implications of advanced collision operators for gyrokinetic simulation. Plasma Phys. Control. Fusion, 59:045005, 2017.

[BC18]

E.A. Belli and J. Candy. Impact of centrifugal drifts on ion turbulent transport. Phys. Plasmas, 25:032301, 2018.

[BCBH11]

R.V. Bravenec, J. Candy, M. Barnes, and C. Holland. Linear and nonlinear verification of gyrokinetic microstability codes. Phys. Plasmas, 18:122505, 2011.

[Can05]

J. Candy. Beta scaling of transport in microturbulence simulations. Phys. Plasmas, 12:072307, 2005.

[CB10]

J. Candy and E. Belli. GYRO Technical Guide. General Atomics Technical Report, 2010.

[CB18]

J. Candy and E.A. Belli. Spectral treatment of gyrokinetic shear flow. J. Comput. Phys., 356:448, 2018. doi:10.1016/j.jcp.2017.12.020.

[CBB16]

J. Candy, E.A. Belli, and R.V. Bravenec. A high-accuracy Eulerian gyrokinetic solver for collisional plasmas. J. Comput. Phys., 324:73, 2016. doi:10.1016/j.jcp.2016.07.039.

[CBS20]

J. Candy, E.A. Belli, and G. Staebler. Spectral treatment of gyrokinetic profile curvature. Plasma Phys. Control. Fusion, 62:042001, 2020. doi:10.1088/1361-6587/ab759c.

[CHW+09]

J. Candy, C. Holland, R.E. Waltz, M.R. Fahey, and E. Belli. Tokamak profile prediction using direct gyrokinetic and neoclassical simulation. Phys. Plasmas, 16:060704, 2009.

[CSB+19]

J. Candy, I. Sfiligoi, E. Belli, K. Hallatschek, C. Holland, N. Howard, and E.D`Azevedo. Multiscale-optimized plasma turbulence simulation on petascale architechtures. Computers & Fluids, 188:125, 2019. doi:10.1016/j.compfluid.2019.04.016.

[CW03a]

J. Candy and R.E. Waltz. Anomalous transport scaling in the DIII-D tokamak matched by supercomputer simulation. Phys. Rev. Lett., 91:045001, 2003. doi:10.1103/PhysRevLett.91.045001.

[CW03b]

J. Candy and R.E. Waltz. An Eulerian gyrokinetic-Maxwell solver. J. Comput. Phys., 186:545, 2003. doi:10.1016/S0021-9991(03)00079-2.

[CW06]

J. Candy and R.E. Waltz. Velocity-space resolution, entropy production and upwind dissipation in Eulerian gyrokinetic simulations. Phys. Plasmas, 13:032310, 2006.

[CWD04]

J. Candy, R.E. Waltz, and W. Dorland. The local limit of global gyrokinetic simulations. Phys. Plasmas, 11:L25, 2004. doi:10.1063/1.1695358.

[CWFH07a]

J. Candy, R.E. Waltz, M.R. Fahey, and C. Holland. Plasma microturbulence simulation of instabilities at highly disparate scales. J. Phys: Conf. Series, 78:012008, 2007.

[CWFH07b]

J. Candy, R.E. Waltz, M.R. Fahey, and C. Holland. The effect of ion-scale dynamics on electron-temperature-gradient turbulence. Plasma Phys. Control. Fusion, 49:1209, 2007.

[CWPC06]

J. Candy, R.E. Waltz, S.E. Parker, and Y. Chen. Relevance of the parallel nonlinearity in gyrokinetic simulations of tokamak plasmas. Phys. Plasmas, 13:074501, 2006.

[CWR04]

J. Candy, R.E. Waltz, and M.N. Rosenbluth. Smooothness of turbulent transport across a minimum-q surface. Phys. Plasmas, 11:1879, 2004.

[CPC+03]

Y. Chen, S.E. Parker, B.I. Cohen, A.M. Dimits, W.M. Nevins, D. Schumaker, V.K. Decyk, and J.N. Leboeuf. Simulations of turbulent transport with kinetic electrons and electromagnetic effects. Nucl. Fusion, 43:1121, 2003.

[CWC+14]

J. Chowdhury, W. Wan, Y. Chen, S.E. Parker, R.J. Groebner, C. Holland, and N.T. Howard. Study of the l-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic $\delta f$ particle-in-cell simulation. Phys. Plasmas, 21:112503, 2014.

[DHCS91]

W.D. Dhaeseleer, W.N.G. Hitchon, J.D. Callen, and J.L. Shohet. Flux coordinates and magnetic field structure. Springer-Verlag, Berlin, 1991.

[DWBC96]

A.M. Dimits, T.J. Williams, J.A. Byers, and B.I. Cohen. Scalings of ion-temperature-gradient-driven anomalous transport in tokamaks. Phys. Rev. Lett., 77:71, 1996.

[DH95]

J.Q. Dong and W. Horton. Study of impurity mode and ion temperature gradient mode in toroidal plasmas. Phys. Plasmas, 2:3412, 1995.

[DH93]

W. Dorland and G.W. Hammett. Gyrofluid turbulence models with kinetic effects. Phys. Fluids B, 5:812, 1993.

[DJKR00]

W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers. Electron temperature gradient turbulence. Phys. Rev. Lett., 85:5579, 2000.

[DCD+22]

H.G. Dudding, F.J. Casson, D. Dickinson, B.S. Patel, C.M. Roach, E.A. Belli, and G.M. Staebler. A new quasilinear saturation rule for tokamak turbulence with application to the isotope scaling of transport. Nuclear Fusion, 62(9):096005, 2022. doi:10.1088/1741-4326/ac7a4d.

[Dud22]

Harry George Dudding. A new quasilinear saturation rule for tokamak turbulence. PhD thesis, University of York, October 2022. URL: https://etheses.whiterose.ac.uk/32664/.

[EMCW05]

C. Estrada-Mila, J. Candy, and R.E. Waltz. Gyrokinetic simulations of ion and impurity transport. Phys. Plasmas, 12:022305, 2005.

[EMCW06a]

C. Estrada-Mila, J. Candy, and R.E. Waltz. Density peaking and turbulent pinch in DIII-D discharges. Phys. Plasmas, 13:074505, 2006.

[EMCW06b]

C. Estrada-Mila, J. Candy, and R.E. Waltz. Turbulent transport of alpha particles and helium ash in reactor plasmas. Phys. Plasmas, 13:112303, 2006.

[FC04]

M.R. Fahey and J. Candy. GYRO: A 5-D gyrokinetic-Maxwell solver. In ACM/IEEE Proceedings of SC2004: High Performance Computing, Networking and Storage (Pittsburgh, PA). 2004.

[GSS+18]

B.A. Grierson, G.M. Staebler, W.M. Solomon, G.R. McKee, C. Holland, M. Austin, A. Marinoni, L. Schmitz, R.I. Pinsker, and DIII-D Team. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER. Phys. Plasmas, 25(2):022509, 2018.

[GWT+14]

T. Görler, A.E. White, D. Told, F. Jenko, C. Holland, and T.L. Rhodes. A flux-matched gyrokinetic analysis of diii-d l-mode turbulence. Phys. Plasmas, 21:122307, 2014. doi:10.1063/1.4904301.

[HBC+94]

G.W. Hammett, M.A. Beer, J.C. Cummings, W. Dorland, W.W. Lee, H.E. Mynick, S.E. Parker, R.A. Santoro, M. Artun, H.P. Furth, T.S. Hahm, G. Rewoldt, W.M. Tang, R.E. Waltz, G.D. Kerbel, and J.L. Milovich. Advances in simulating tokamak turbulent transport. In Proceedings of the 15th IAEA Fusion Energy Conference, Seville, Spain, 1994, Vol III, p. 273. 1994.

[HW06]

F.L. Hinton and R.E. Waltz. Gyrokinetic turbulent heating. Phys. Plasmas, 13:102301, 2006.

[HWC04]

F.L. Hinton, R.E. Waltz, and J. Candy. Effect of electromagnetic turbulence in the neoclassical Ohm's law. Phys. Plasmas, 11:2433, 2004.

[HW85]

F.L. Hinton and S.K. Wong. Neoclassical ion transport in rotating axisymmetric plasmas. Phys. Fluids, 28:3082, 1985. doi:10.1063/1.865350.

[Hol16]

C. Holland. Validation metrics for turbulent plasma transport. Phys. Plasmas, 23:060901, 2016.

[HCW+08]

C. Holland, J. Candy, R.E Waltz, A.E. White, G.R. McKee, M.W. Shafer, L. Schmitz, and G.R Tynan. Validating simulations of core tokamak turbulence: current status and future directions. J. Phys: Conf. Series, 125:012043, 2008.

[HWM+09]

C. Holland, A.E. White, G.R. McKee, M.W. Shafer, J. Candy, R.E Waltz, L. Schmitz, and G.R Tynan. Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence. Phys. Plasmas, 16:052301, 2009.

[HHW+16]

N.T. Howard, C. Holland, A.E. White, M. Greenwald, and J. Candy. Multi-scale gyrokinetic simulation of tokamak plasmas: enhanced heat loss due to cross-scale coupling of plasma turbulence. Nucl. Fusion, 56(1):014004, 2016. doi:10.1088/0029-5515/56/1/014004.

[K+19]

S.M. Kaye and others. NSTX/NSTX-U theory, modeling and analysis results. Nucl. Fusion, 59:112007, 2019.

[KSW08]

J. E. Kinsey, G. M. Staebler, and R. E. Waltz. The first transport code simulations using the trapped gyro-Landau-fluid model. Phys. Plasmas, 15(5):055908, 2008. doi:10.1063/1.2889008.

[KWC05]

J.E. Kinsey, R.E. Waltz, and J. Candy. Nonlinear gyrokinetic turbulence simulations of E×B shear quenching of transport. Phys. Plasmas, 12:062302, 2005.

[KWC06]

J.E. Kinsey, R.E. Waltz, and J. Candy. The effect of safety factor and magnetic shear on turbulent transport in nonlinear gyrokinetic simulations. Phys. Plasmas, 13:022305, 2006.

[KWC07]

J.E. Kinsey, R.E. Waltz, and J. Candy. The effect of plasma shaping on turbulent transport and E×B shear quenching in nonlinear gyrokinetic simulations. Phys. Plasmas, 14:102306, 2007.

[KKH+00]

Y. Kishimoto, J.-Y. Kim, W. Horton, T. Tajima, M.J. LeBrun, S.A. Dettrick, J.Q. Li, and S. Shirai. Discontinuity model for internal transport formation in reversed magnetic shear plasmas. Nucl. Fusion, 40:667, 2000.

[Kot88]

M. Kotschenreuther. Invited talk 9I4. Bull. Am. Phys. Soc., 33:2107, 1988.

[KRT95]

M. Kotschenreuther, G. Rewoldt, and W.M. Tang. Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities. Comput. Phys. Commun., 88:128, 1995. doi:10.1016/0010-4655(95)00035-E.

[Kro99]

J.A. Krommes. Thermostatted delta-f. Phys. Plasmas, 6:1477, 1999.

[KH94]

J.A. Krommes and G. Hu. The role of dissipation in the theory and simulations of homogeneous plasma turbulence, and resolution of the entropy paradox. Phys. Plasmas, 1:3211, 1994.

[KK58]

M.D. Kruskal and R.M. Kulsrud. Equilibrium of a magnetically confined plasma in a toroid. Phys. Fluids, 1:265, 1958.

[LPE+09]

L. Lin, M. Porkolab, E.M. Edlund, J.C. Rost, C.L. Fiore, M. Greenwald, Y. Lin, D.R. Mikkelsen, N. Tsujii, and S J. Wukitch. Studies of turbulence and transport in Alcator C-Mod H-mode plasmas with phase contrast imaging and comparisons with GYRO. Phys. Plasmas, 16:012502, 2009.

[LEHT02]

Z. Lin, S. Ethier, T.S. Hahm, and W.M. Tang. Size scaling of turbulent transport in magnetically confined plasmas. Phys. Rev. Lett., 88:195004, 2002.

[NCC+06]

W.M. Nevins, J. Candy, S. Cowley, T. Dannert, A. Dimits, W. Dorland, C. Estrada-Mila, G.W. Hammett, F. Jenko, M.J. Pueschel, and D.E. Shumaker. Characterizing electron temperature gradient turbulence via numerical simulation. Phys. Plasmas, 13:122306, 2006.

[NHD+05]

W.M. Nevins, G.W. Hammett, A.M. Dimits, W. Dorland, and D.E. Shumaker. Discrete particle noise in particle-in-cell simulations of plasma microturbulence. Phys. Plasmas, 12:122305, 2005.

[RH98]

M.N. Rosenbluth and F.L. Hinton. Poloidal flow driven by ion-temperature-gradient turbulence in tokamaks. Phys. Rev. Lett., 80:724, 1998.

[SH01]

P.B. Snyder and G.W. Hammett. Electromagnetic effects on plasma microturbulence and transport. Phys. Plasmas, 8:744, 2001.

[SCB+20]

G M Staebler, J Candy, E A Belli, J E Kinsey, N Bonanomi, and B Patel. Geometry dependence of the fluctuation intensity in gyrokinetic turbulence. Plasma Physics and Controlled Fusion, 63(1):015013, 2020. doi:10.1088/1361-6587/abc861.

[SCHH16]

G. M. Staebler, J. Candy, N. T. Howard, and C. Holland. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence. Phys. Plasmas, 23(6):062518, 2016. doi:10.1063/1.4954905.

[SKW07]

G. M. Staebler, J. E. Kinsey, and R. E. Waltz. A theory-based transport model with comprehensive physics. Phys. Plasmas, 14(5):055909, 2007. doi:10.1063/1.2436852.

[SWCK13]

G. M. Staebler, R. E. Waltz, J. Candy, and J. E. Kinsey. New paradigm for suppression of gyrokinetic turbulence by velocity shear. Phys. Rev. Lett., 110:055003, 2013. doi:10.1103/PhysRevLett.110.055003.

[SBC+21]

G.M. Staebler, E. A. Belli, J. Candy, J.E. Kinsey, H. Dudding, and B. Patel. Verification of a quasi-linear model for gyrokinetic turbulent transport. Nuclear Fusion, 61(11):116007, 2021. doi:10.1088/1741-4326/ac243a.

[SCW+13]

G.M. Staebler, J. Candy, R.E. Waltz, J.E. Kinsey, and W.M. Solomon. A new paradigm for ExB velocity shear suppression of gyro-kinetic turbulence and the momentum pinch. Nuclear Fusion, 53(11):113017, 2013. doi:10.1088/0029-5515/53/11/113017.

[SK10]

G.M. Staebler and J.E. Kinsey. Electron collisions in the trapped gyro-landau fluid transport model. Phys. Plasmas, 17:122309, 2010.

[SKW05]

G.M. Staebler, J.E. Kinsey, and R.E. Waltz. Gyro-Landau fluid equations for trapped and passing particles. Phys. Plasmas, 12:102508, 2005.

[SH98]

H. Sugama and W. Horton. Nonlinear electromagnetic gyrokinetic equation for plasmas with large mean flows. Phys. Plasmas, 5:2560, 1998.

[SWNN11]

H. Sugama, T.-H. Watanabe, M. Nunami, and S. Nishimura. Momentum balance and radial electric fields in axisymmetric and nonaxisymmetric toroidal plasmas. Plasma Phys. Control. Fusion, 53:024004, 2011.

[TDG+21]

K.E. Thome, X.D. Du, B.A. Grierson, G.J. Kramer, C.C. Petty, C. Holland, M. Knolker, G.R. McKee, J. McClenaghan, D.C. Pace, T.L. Rhodes, S.P. Smith, C. Sung, F. Turco, M.A. Van Zeeland, L. Zeng, and Y.B. Zhu. Response of thermal and fast-ion transport to beam ion population, rotation and Te/Ti in the DIII-D steady state hybrid scenario. Nucl. Fusion, 61:036036, 2021.

[VATHD+05]

J.S. Vetter, S. Alam, Jr. T.H. Dunigan, M.R. Fahey, P.C. Roth, and P. Worley. Early evaluation of the cray xt3 at ornl. In Proceedings of the 47th Cray User Group Conference, Knoxville, TN, May 16-19. 2005.

[Wal05]

R.E. Waltz. Rho-star scaling and physically realistic gyrokinetic simulations of transport in DIII-D. Fus. Sci. Tech., 48:1051, 2005.

[WABC06]

R.E. Waltz, M.E. Austin, K.H. Burrell, and J. Candy. Gyrokinetic simulations of off-axis minimum-q profile corrugations. Phys. Plasmas, 12:052301, 2006.

[WC05]

R.E. Waltz and J. Candy. Heuristic theory of nonlocally broken gyrobohm scaling. Phys. Plasmas, 12:072303, 2005.

[WCF07]

R.E. Waltz, J. Candy, and M. Fahey. Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations. Phys. Plasmas, 14:056116, 2007.

[WCH+05]

R.E. Waltz, J. Candy, F.L. Hinton, C. Estrada-Mila, and J.E. Kinsey. Advances in comprehensive simulations of transport in tokamaks. Nucl. Fusion, 45:741, 2005.

[WCP06]

R.E. Waltz, J. Candy, and C.C. Petty. Projected profile similarity in gyrokinetic simulations of Bohm and gyroBohm scaled DIII-D L and H modes. Phys. Plasmas, 13:072304, 2006.

[WCR02]

R.E. Waltz, J. Candy, and M.N. Rosenbluth. Gyrokinetic turbulence simulation of profile shear stabilization and broken gyrobohm scaling. Phys. Plasmas, 9:1938, 2002.

[WH08]

R.E. Waltz and C. Holland. Numerical experiments on the drift wave-zonal flow paradigm for nonlinear saturation. Phys. Plasmas, 15:122503, 2008.

[WKM94]

R.E. Waltz, G.R. Kerbel, and J. Milovich. Toroidal gyro-landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes. Phys. Plasmas, 1:2229, 1994.

[WKMH95]

R.E. Waltz, G.R. Kerbel, J. Milovich, and G.W. Hammett. Advances in the simulation of toroidal gyro-landau fluid model turbulence. Phys. Plasmas, 2:2408, 1995.

[WS08]

R.E. Waltz and G.M. Staebler. Gyrokinetic theory and simulation of turbulent energy exchange. Phys. Plasmas, 15:014505, 2008.

[WSCH07]

R.E. Waltz, G.M. Staebler, J. Candy, and F.L. Hinton. Gyrokinetic theory and simulation of angular momentum transport. Phys. Plasmas, 14:122507, 2007.

[WSD+97]

R.E. Waltz, G.M. Staebler, W. Dorland, G.W. Hammett, M. Kotschenreuther, and J.A. Konings. A gyro-landau fluid transport model. Phys. Plasmas, 4:2482, 1997.

[WSM+08]

A.E. White, L. Schmitz, G.R. McKee, C. Holland, W.A. Peebles, T.A. Carter, M.W. Shafer, M.E. Austin, K.H. Burrell, J. Candy, and others. Measurements of core electron temperature and density fluctuations in DIII-D and comparison to nonlinear gyrokinetic simulations. Phys. Plasmas, 15(5):056116, 2008.

[WATHD+05]

P. Worley, S. Alam, Jr. T.H. Dunigan, M.R. Fahey, and J.S. Vetter. Comparative analysis of interprocess communication on the x1, xd1, and xt3. In Proceedings of the 47th Cray User Group Conference, Knoxville, TN, May 16-19. 2005.

[WCC+05]

P. Worley, J. Candy, L. Carrington, K. Huck, T. Kaiser, G. Mahinthakumar, A. Maloney, S. Moore, D. Reed, P. Roth, H. Shan, S. Shende, A. Snavely, S. Sreepathi, F. Wolf, and Y. Zhang. Performance analysis of gyro: a tool evaluation. In Proceedings of the 2005 SciDAC Conference, San Francisco, CA, June 26-30. 2005.