NEO Output Files
NEO output files are produced only if SILENT_FLAG = 0.
All NEO runtime information is written to out.neo.run.
Standard output files
Filename |
Short description |
---|---|
Equilibrium/geometry input data |
|
First-order distribution function |
|
Numerical grid parameters |
|
Poloidal variation of first-order es potential |
|
Neoclassical transport coefficients from analytic theory |
|
Mass and charge of all species |
|
Neoclassical transport coefficients from the NCLASS code |
|
Neoclassical transport coefficients from DKE solve |
|
Neoclassical fluxes in GB units from DKE solve |
|
Neoclassical fluxes from gyroviscosity |
|
Poloidal variation of first-order flows |
|
Poloidal variation of first-order flows (Fourier components) |
Experimental profiles output files
Produced only if PROFILE_MODEL = 2.
Filename |
Short description |
---|---|
Neoclassical transport coefficients from DKE solve (in units) |
|
Normalizing experimental parameters (in units) |
Rotation output files
Produced only if ROTATION_MODEL = 2.
Filename |
Short description |
---|---|
Strong rotation poloidal asymmetry parameters |
Subroutine output
When neo is run in subroutine mode, the outputs are contained in a monolithic file named neo_interface. The NEO subroutine output parameters are as follows:
Parameter name |
Short description |
Normalization |
---|---|---|
neo_pflux_dke_out(1:11) |
DKE solve particle flux |
\(\Gamma_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm})\) |
neo_efluxtot_dke_out(1:11) |
DKE solve energy flux |
\(Q_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\) |
neo_efluxncv_dke_out(1:11) |
DKE solve non-convective energy flux |
\(\left(Q_{\sigma}-\omega_0 \Pi_{\sigma}\right)/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\) |
neo_mflux_dke_out(1:11) |
DKE solve momentum flux |
\(\Pi_{\sigma}/(n_\mathrm{norm} T_\mathrm{norm} a_\mathrm{norm})\) |
neo_vpol_dke_out(1:11) |
DKE solve poloidal flow |
\({\rm v}_{\theta,\sigma}(\theta=0)/{\rm v}_\mathrm{norm}\) |
neo_vtor_dke_out(1:11) |
DKE solve toroidal flow |
\({\rm v}_{\varphi,\sigma}(\theta=0)/{\rm v}_\mathrm{norm}\) |
neo_jpar_dke_out |
DKE solve bootstrap current (parallel) |
\(\left< j_{\|} B \right>/(e n_\mathrm{norm} {\rm v}_\mathrm{norm} B_{unit})\) |
neo_jtor_dke_out |
DKE solve bootstrap current (toroidal) |
\(\left< j_{\varphi} /R \right>/ \left< 1/R \right> / (e n_\mathrm{norm} {\rm v}_\mathrm{norm})\) |
neo_pflux_gv_out(1:11) |
Gyroviscosity particle flux |
\(\Gamma_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm})\) |
neo_efluxtot_gv_out(1:11) |
Gyroviscosity energy flux |
\(Q_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\) |
neo_efluxncv_gv_out(1:11) |
Gyroviscosity non-convective energy flux |
\(\left(Q_{\sigma}-\omega_0 \Pi_{\sigma}\right)/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\) |
neo_mflux_gv_out(1:11) |
Gyroviscosity momentum flux |
\(\Pi_{\sigma}/(n_\mathrm{norm} T_\mathrm{norm} a_\mathrm{norm})\) |
neo_pflux_thHH_out |
Hinton-Hazeltine ion particle flux |
\(\Gamma_{i}/(n_\mathrm{norm} {\rm v}_\mathrm{norm})\) |
neo_eflux_thHHi_out |
Hinton-Hazeltine ion energy flux |
\(Q_{i}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\) |
neo_eflux_thHHe_out |
Hinton-Hazeltine electron energy flux |
\(Q_{e}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\) |
neo_eflux_thCHi_out |
Chang-Hinton ion energy flux |
\(Q_{i}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\) |
neo_pflux_thHS_out(1:11) |
Hirshman-Sigmar particle flux |
\(\Gamma_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm})\) |
neo_eflux_thS_out(1:11) |
Hirshman-Sigmar energy flux |
\(Q_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\) |
neo_jpar_thS_out |
Sauter bootstrap current (parallel) |
\(\left< j_{\|} B \right>/(e n_\mathrm{norm} {\rm v}_\mathrm{norm} B_{unit})\) |
neo_jtor_thS_out |
Sauter bootstrap current (toroidal) |
\(\left< j_{\varphi} /R \right>/ \left< 1/R \right> / (e n_\mathrm{norm} {\rm v}_\mathrm{norm})\) |
neo_pflux_nclass_out(1:11) |
NCLASS solve particle flux |
\(\Gamma_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm})\) |
neo_efluxtot_nclass_out(1:11) |
NCLASS solve energy flux |
\(Q_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\) |
neo_vpol_nclass_out(1:11) |
NCLASS solve poloidal flow |
\({\rm v}_{\theta,\sigma}(\theta=0)/{\rm v}_\mathrm{norm}\) |
neo_vtor_nclass_out(1:11) |
NCLASS solve toroidal flow |
\({\rm v}_{\varphi,\sigma}(\theta=0)/{\rm v}_\mathrm{norm}\) |
neo_jpar_nclass_out |
NCLASS solve bootstrap current (parallel) |
\(\left< j_{\|} B \right>/(e n_\mathrm{norm} {\rm v}_\mathrm{norm} B_{unit})\) |
Detailed description of NEO output files
out.neo.equil
Description
Equilibrium/geometry input data
Format
Rectangular array of ASCII data:
rows: \(\mathtt{N\_RADIAL}\)
cols: \(7 + 5 \times \mathtt{N\_SPECIES}\)
\(r/a\): normalized midplane minor radius
\((\partial \Phi_{0}/\partial r)(a e/T_\mathrm{norm})\): normalized equilibrium-scale radial electric field
\(q\): safety factor
\(\rho_* = (c \sqrt{m_\mathrm{norm} T_\mathrm{norm}})/(e B_{unit} a)\): ratio of Larmor radius of normalizing species to the normalizing length
\(R_0/a\): normalized flux-surface-center major radius
\(\omega_0 (a/{\rm v}_\mathrm{norm})\): normalized toroidal angular frequency
\((d \omega_0/dr)(a^2/{\rm v}_\mathrm{norm})\): normalized toroidal rotation shear
For each species \(\sigma\):
\(n_{\sigma}/n_\mathrm{norm}\): normalized equilibrium-scale density
\(T_{\sigma}/T_\mathrm{norm}\): normalized equilibrium-scale temperature
\(a/L_{n\sigma} = -a (d {\rm ln} n_{\sigma}/dr)\): normalized equilibrium-scale density gradient scale length
\(a/L_{T\sigma} = -a (d {\rm ln} T_{\sigma}/dr)\): normalized equilibrium-scale temperature gradient scale length
\(\tau_{\sigma\sigma}^{-1} (a/{\rm v}_\mathrm{norm})\): normalized collision frequency
out.neo.exp_norm
Description
Normalizing experimental parameters (in units)
Format
Rectangular array of ASCII data:
rows: \(\mathtt{N\_RADIAL}\)
cols: \(7\)
\(r/a\): normalized midplane minor radius
\(a\): normalizing length (m)
\(m_\mathrm{norm}\): normalizing mass (e-27 kg)
\(n_\mathrm{norm}\): normalizing equilibrium-scale density (e19/m^3)
\(T_\mathrm{norm}\): normalizing equilibrium-scale temperature (keV)
\({\rm v}_\mathrm{norm}\): normalizing thermal speed (m/s)
\(B_{unit}\): normalizing magnetic field (T)
out.neo.f
Description
First-order distribution function solution (dimensionless), specifically vector of \(\hat{g}_{a,ie,ix,it}\) (first-order non-adiabatic distribution function for each species \(a\)), where
where \(f_{0a}\) is the zeroth-order distribution function (Maxwellian), \(L_{ie}\) are associated Laguerre polynomials and \(P_{ix}\) are Legendre polynomials, \(k(ix)=0\) for ix=0 and \(k(ix)=1\) for ix>0, \(\xi={\rm v}/{\rm v}_{\|}\) is the cosine of the pitch angle, and \(x_a = {\rm v}/\sqrt{2 {\rm v}_{ta}}\) is the normalized energy.
Format
Vector of ASCII data:
\((\mathtt{N\_RADIAL}) \times (\mathtt{N\_SPECIES}) \times (\mathtt{N\_ENERGY}+1) \times (\mathtt{N\_XI}+1) \times (\mathtt{N\_THETA}\))
out.neo.grid
Description
Numerical grid parameters
Format
Vector of ASCII data:
\(5 + \mathtt{N\_THETA} + \mathtt{N\_RADIAL}\)
\(\mathtt{N\_SPECIES}\): number of kinetic species
\(\mathtt{N\_ENERGY}\): number of energy polynomials
\(\mathtt{N\_XI}\): number of \(\xi={\rm v}/{\rm v}_{\|}\) (cosine of pitch angle) polynomials
\(\mathtt{N\_THETA}\): number of theta gridpoints
\(\theta_j\): theta gridpoints (j=1..N_THETA)
\(\mathtt{N\_RADIAL}\): number of radial gridpoints
\(r_j/a\): normalized radial gridpoints (j=1..N_RADIAL)
out.neo.phi
Description
Neoclassical first-order electrostatic potential (normalized) vs. \(\theta\)
Format
Rectangular array of ASCII data:
rows: \(\mathtt{N\_RADIAL}\)
cols: \(\mathtt{N\_THETA}\)
\(\frac{e \Phi_{1}(\theta_j)}{T_\mathrm{norm}}\): first-order electrostatic potential vs. \(\theta_j\) (j=1…N_THETA)
out.neo.rotation
Description
Strong rotation poloidal asymmetry parameters (normalized)
Define:
\(\Phi_* = \Phi_0 - \Phi_0(\theta=0)\)
\(\varepsilon_\sigma = \frac{z_\sigma e}{T_\sigma} - \frac{m_\sigma \omega_0^2}{2 T_\sigma} [R^2 - R^2(\theta=0)]\)
\(e_{0\sigma} = \left< e^{-\varepsilon_\sigma} \right>\)
\(e_{1\sigma} = \left< e^{-\varepsilon_\sigma} \frac{z_\sigma e \Phi_*}{T_\sigma} \right>\)
\(e_{2\sigma} = a_\mathrm{norm} \left< e^{-\varepsilon_\sigma} \frac{z_\sigma e}{T_\sigma} \frac{\partial \Phi_*}{\partial r} \right>\)
\(e_{3\sigma} = \frac{1}{a_\mathrm{norm}^2} \left< e^{-\varepsilon_\sigma} [R^2 - R^2(\theta=0)] \right>\)
\(e_{4\sigma} = \frac{1}{a_\mathrm{norm}} \left< e^{-\varepsilon_\sigma} \frac{\partial [R^2 - R^2(\theta=0)]}{\partial r} \right>\)
\(e_{5\sigma} = a_\mathrm{norm} \left< e^{-\varepsilon_\sigma} \frac{\partial \ln \sqrt{g}}{\partial r} \right> - a_\mathrm{norm} \left< e^{-\varepsilon_\sigma} \right> \left< \frac{\partial \ln \sqrt{g}}{\partial r} \right>\)
For anisotropic species, all temperatures are interpreted as \(T_{\|}\), the total energy is modified by \(\varepsilon_\sigma \rightarrow \varepsilon_\sigma + \lambda_{{\rm aniso},\sigma}(r,\theta)\), and we define the additional term \(e_{6\sigma} = -a_\mathrm{norm} \left< e^{-\varepsilon_\sigma} \frac{\partial \lambda_{{\rm aniso},\sigma}}{\partial r} \right>\)
\(F_{V\sigma} = \frac{1}{e_{0\sigma}} \left[ -e_{2\sigma} + e_{3\sigma} a_\mathrm{norm}^3 \frac{\omega_0}{{\rm v}_{t\sigma}} \frac{d \omega_0}{d r} + e_{4\sigma} a_\mathrm{norm}^2 \frac{\omega_0^2}{2 {\rm v}_{t\sigma}^2} + e_{1\sigma} a_\mathrm{norm} \frac{d \ln T_{\sigma}}{d r} - e_{3\sigma} a_\mathrm{norm}^3 \frac{d \ln T_{\sigma}}{d r} \frac{\omega_0^2}{2 {\rm v}_{t\sigma}^2} + e_{5\sigma} + e_{6\sigma} \right]\)
Format
Rectangular array of ASCII data:
rows: \(\mathtt{N\_RADIAL}\)
cols: \(2 + 2 \times \mathtt{N\_SPECIES} + \mathtt{N\_THETA} + 2 \times \mathtt{N\_SPECIES} \times \mathtt{N\_THETA}\)
Fixed entries:
\(r/a\): normalized midplane minor radius
\(\frac{e \left< \Phi_* \right>}{T_\mathrm{norm}}\): difference between the flux-surface-averaged equilibrium-scale potential and the value at the outboard midplane (0 in the diamagnetic ordering limit)
For each species \(\sigma\):
\(\frac{1}{e_{0\sigma}} = \frac{n_{\sigma}}{\left< n_{\sigma} \right>}\): ratio of the density at the outboard midplane to the flux-surface-averaged equilibrium-scale density (1 in the diamagnetic ordering limit)
\(F_{V\sigma}\): Factor related to the transformation of the particle flux convection (presently only valid in \(s-\alpha\) geometry)
For each \(\theta_j\), j=1..N_THETA
\(\frac{e \Phi_*(\theta_j)}{T_\mathrm{norm}}\): difference between the equilibrium-scale potential and the value at the outboard midplane (0 in the diamagnetic ordering limit)
\(\frac{n_{\sigma}(\theta_j)}{n_{\sigma}(\theta=0)}\): poloidal variation of the equilibrium-scale density normalized to the value at the outboard midplane (1 in the diamagnetic ordering limit)
out.neo.species
Description
Mass and charge of all species
Format
Rectangular array of ASCII data:
cols: \(2 \times \mathtt{N\_SPECIES}\)
For each species \(\sigma\):
\(m_\sigma/m_\mathrm{norm}\): species mass (we suggest always taking deuterium as the normalizing mass)
\(z_\sigma\): species charge
out.neo.theory
Description
Neoclassical transport coefficients from analytic theory (normalized)
Only the Hirshman-Sigmar quantities are meaningful for multiple-ion species plasmas.
None of the theories are valid with strong rotation effects included.
Theory references
Hinton-Hazltine flows and fluxes: Rev. Mod. Phys., vol. 48, 239 (1976)
Chang-Hinton ion heat flux: Phys. Plasmas, vol. 25, 1493 (1982)
Taguchi ion heat flux (modified with Chang-Hinton collisional interpolation factor): PPCF, vol. 30, 1897 (1988)
Sauter et al. bootstrap current model: Phys. Plasmas, vol. 6, 2834 (1999)
Hinton-Rosenbluth potential: Phys. Fluids 16, 836 (1973)
Hirshman-Sigmar fluxes: Phys. Fluids, vol. 20, 418 (1977)
Koh et al. bootstrap current model: Phys. Plasmas, vol. 19, 072505 (2012)
Format
Rectangular array of ASCII data:
rows: \(\mathtt{N\_RADIAL}\)
cols: \(17 + 2 \times \mathtt{N\_SPECIES}\)
\(r/a\): normalized midplane minor radius
HH \(\Gamma_{i}/(n_\mathrm{norm} {\rm v}_\mathrm{norm})\): Hinton-Hazeltine second-order radial particle flux (ambipolar)
HH \(Q_{i}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\): Hinton-Hazeltine second-order radial energy flux (ion)
HH \(Q_{e}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\): Hinton-Hazeltine second-order radial energy flux (electron)
HH \(\left< j_{\|} B \right>/(e n_\mathrm{norm} {\rm v}_\mathrm{norm} B_{unit})\): Hinton-Hazeltine first-order bootstrap current
HH \(k_{i}\): Hinton-Hazeltine first-order dimensionless flow coefficient (ion)
HH \(\left< u_{\|,i} B \right>/({\rm v}_\mathrm{norm} B_{unit})\): Hinton-Hazeltine first-order parallel flow (ion)
HH \({\rm v}_{\theta,i}(\theta=0)/{\rm v}_\mathrm{norm}\): Hinton-Hazeltine first-order poloidal flow at the outboard midplane (ion)
CH \(Q_{i}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\): Chang-Hinton second-order radial energy flux (ion)
TG \(Q_{i}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\): Taguchi second-order radial energy flux (ion)
S \(\left< j_{\|} B \right>/(e n_\mathrm{norm} {\rm v}_\mathrm{norm} B_{unit})\): Sauter first-order bootstrap current
S \(k_{i}\): Sauter first-order dimensionless flow coefficient (ion)
S \(\left< u_{\|,i} B \right>/({\rm v}_\mathrm{norm} B_{unit})\): Sauter first-order parallel flow (ion)
S \({\rm v}_{\theta,i}(\theta=0)/{\rm v}_\mathrm{norm}\): Sauter first-order poloidal flow at the outboard midplane (ion)
HR \(\left< (e \Phi_1/T_\mathrm{norm})^2 \right>\): Hinton-Rosenbluth first-order electrostatic potential
For each species \(\sigma\):
HS \(\Gamma_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm})\): Hirshman-Sigmar second-order radial particle flux
HS \(Q_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\): Hirshman-Sigmar second-order radial energy flux
K \(\left< j_{\|} B \right>/(e n_\mathrm{norm} {\rm v}_\mathrm{norm} B_{unit})\): Koh first-order bootstrap current
S \(\left< j_{\|} B \right>/(e n_\mathrm{norm} {\rm v}_\mathrm{norm} B_{unit})\): Sauter first-order bootstrap current
out.neo.theory_nclass
Description
Neoclassical transport coefficients from the NCLASS code (normalized)
Only produced if SIM_MODEL = 1 or 3.
Note that for local mode (PROFILE_MODEL = 1), it is assumed in the NCLASS calculation that the normalizing mass is the mass of deuterium and that the input collision frequencies are self-consistent across all species.
NCLASS reference: W.A. Houlberg, et al, Phys. Plasmas, vol. 4, 3230 (1997)
Format
Rectangular array of ASCII data:
rows: \(\mathtt{N\_RADIAL}\)
cols: \(2 + 5 \times \mathtt{N\_SPECIES}\)
\(r/a\): normalized midplane minor radius
\(\left< j_{\|} B \right>/(e n_\mathrm{norm} {\rm v}_\mathrm{norm} B_{unit})\): first-order bootstrap current
For each species \(\sigma\):
\(\Gamma_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm})\): second-order radial particle flux
\(Q_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\): second-order radial energy flux
\(\left< u_{\|,\sigma} B \right>/({\rm v}_\mathrm{norm} B_{unit})\): first-order parallel flow
\({\rm v}_{\theta,\sigma}(\theta=0)/{\rm v}_\mathrm{norm}\): first-order poloidal flow at the outboard midplane
\({\rm v}_{\varphi,\sigma}(\theta=0)/{\rm v}_\mathrm{norm}\): first-order toroidal flow at the outboard midplane
out.neo.transport
Description
Neoclassical transport coefficients from DKE solve (normalized)
Format
Rectangular array of ASCII data:
rows: \(\mathtt{N\_RADIAL}\)
cols: \(5 + 8 \times \mathtt{N\_SPECIES}\)
\(r/a\): normalized midplane minor radius
\(\left< (e \Phi_1/T_\mathrm{norm} )^2 \right>\): first-order electrostatic potential
\(\left< j_{\|} B \right>/(e n_\mathrm{norm} {\rm v}_\mathrm{norm} B_{unit})\): first-order bootstrap current
\(v_{\varphi}^{(0)}(\theta=0)/{\rm v}_\mathrm{norm}\): zeroth-order toroidal flow at the outboard midplane (\(v_{\varphi}^{(0)}=\omega_0 R\))
\(\left< u_{\|}^{(0)} B \right>/({\rm v}_\mathrm{norm} B_{unit})\): zeroth-order parallel flow (\(u_{\|}^{(0)}=\omega_0 I/B\))
For each species \(\sigma\):
\(\Gamma_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm})\): second-order radial particle flux
\(Q_{\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm} T_\mathrm{norm})\): second-order radial energy flux
\(\Pi_{\sigma}/(n_\mathrm{norm} T_\mathrm{norm} a_\mathrm{norm})\): second-order radial momentum flux
\(\left< u_{\|,\sigma} B \right>/({\rm v}_\mathrm{norm} B_{unit})\): first-order parallel flow
\(k_{\sigma}\): first-order dimensionless flow coefficient
\(K_{\sigma}/(n_\mathrm{norm} {rm v}_\mathrm{norm}/B_{unit})\): first-order dimensional flow coefficient
\({\rm v}_{\theta,\sigma}(\theta=0)/{\rm v}_\mathrm{norm}\): first-order poloidal flow at the outboard midplane
\({\rm v}_{\varphi,\sigma}(\theta=0)/{\rm v}_\mathrm{norm}\): first-order toroidal flow at the outboard midplane
out.neo.transport_exp
Description
Neoclassical transport coefficients from DKE solve (in units)
Format
Rectangular array of ASCII data:
rows: \(\mathtt{N\_RADIAL}\)
cols: \(5 + 8 \times \mathtt{N\_SPECIES}\)
\(r\): midplane minor radius (\(m\))
\(\left< (\Phi_1)^2 \right>\): first-order electrostatic potential (\(V^2\))
\(\left< j_{\|} B \right>/B_{unit}\): first-order bootstrap current (\(A/m^2\))
\(v_{\varphi}^{(0)}(\theta=0)\): zeroth-order toroidal flow at the outboard midplane (\(v_{\varphi}^{(0)}=\omega_0 R\)) (\(m/s\))
\(\left< u_{\|}^{(0)} B \right>/B_{unit}\): zeroth-order parallel flow (\(u_{\|}^{(0)}=\omega_0 I/B\)) (\(m/s\))
For each species \(\sigma\):
\(\Gamma_{\sigma}\): second-order radial particle flux (\(e19 m^{-2} s^{-1}\))
\(Q_{\sigma}\): second-order radial energy flux (\(W/m^2\))
\(\Pi_{\sigma}\): second-order radial momentum flux (\(N/m\))
\(\left< u_{\|,\sigma} B \right>/B_{unit}\): first-order parallel flow (\(m/s\))
\(k_{\sigma}\): first-order dimensionless flow coefficient
\(K_{\sigma}\): first-order dimensional flow coefficient (\(e19/(m^2 s T)\))
\({\rm v}_{\theta,\sigma}(\theta=0)\): first-order poloidal flow at the outboard midplane (\(m/s\))
\({\rm v}_{\varphi,\sigma}(\theta=0)\): first-order toroidal flow at the outboard midplane (\(m/s\))
out.neo.transport_flux
Description
Neoclassical fluxes in GB units (defined below) from DKE solve
where \(c_s=\sqrt{T_e/m_D}\) and \(\displaystyle \rho_{s,{\rm unit}}=\frac{c_s}{e B_{\rm unit}/(m_D c)}\).
Format
Rectangular array of ASCII data:
rows: \(\mathtt{N\_RADIAL} \times 3 \times \mathtt{N\_SPECIES}\)
cols: \(3\)
For each species \(\sigma\):
row of DKE (\(\Gamma_{\sigma}/\Gamma_{GB}\), \(Q_{\sigma}/Q_{GB}\), \(\Pi_{\sigma}/\Pi_{GB}\)): second-order radial particle, energy, and momentum fluxes from DKE solve
For each species \(\sigma\):
row of GV (\(\Gamma_{\sigma}/\Gamma_{GB}\), \(Q_{\sigma}/Q_{GB}\), \(\Pi_{\sigma}/\Pi_{GB}\)): second-order radial particle, energy, and momentum fluxes from gyroviscosity
For each species \(\sigma\):
row of TGYRO (\(\Gamma_{\sigma}/\Gamma_{GB}\), \(Q_{\sigma}/Q_{GB}\), \(\Pi_{\sigma}/\Pi_{GB}\)): : second-order radial particle, energy, and momentum fluxes for transport equations
out.neo.transport_gv
Description
Neoclassical fluxes from gyroviscosity (normalized)
These fluxes are nonzero only for the case of combined sonic rotation with up-down asymmetric flux surfaces.
In the transport equations, these fluxes should be added to the fluxes from the DKE solve.
Reference: H. Sugama and W. Horton, Phys. Plasmas, vol. 4, 405 (1997).
Format
Rectangular array of ASCII data:
rows: \(\mathtt{N\_RADIAL}\)
cols: \(1 + 3 \times \mathtt{N\_SPECIES}\)
\(r/a\): normalized midplane minor radius
For each species \(\sigma\):
\(\Gamma_{gv,\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm})\): Gyroviscous second-order radial particle flux
\(Q_{gv,\sigma}/(n_\mathrm{norm} {\rm v}_\mathrm{norm})\): Gyroviscous second-order radial energy flux
\(\Pi_{gv,\sigma}/(n_\mathrm{norm} T_\mathrm{norm} a_\mathrm{norm})\): Gyroviscous second-order radial momentum flux
out.neo.vel
Description
Poloidal variation of first-order flows (normalized)
Format
Rectangular array of ASCII data:
rows: \(\mathtt{N\_RADIAL}\)
cols: \(\mathtt{N\_SPECIES} \times \mathtt{N\_THETA}\)
For each species \(\sigma\):
\(u_{\|,\sigma}(\theta_j)/{\rm v}_\mathrm{norm}\): first-order parallel flow vs. \(\theta_j \; (j=1 \ldots \mathtt{N\_THETA})\)
out.neo.vel_fourier
Description
Poloidal variation of first-order flows (normalized) in Fourier series components
Format
Rectangular array of ASCII data:
rows: \(\mathtt{N\_RADIAL}\)
cols: \(\mathtt{N\_SPECIES} \times 6 \times (\mathtt{M\_THETA} + 1)\) where \(\mathtt{M\_THETA} = \frac{\mathtt{N\_THETA}-1}{2}-1\)
For each species \(\sigma\):
For j=0..M_THETA, \(u_{\|,\sigma,cj}\): cosine-component of first-order parallel flow
For j=0..M_THETA, \(u_{\|,\sigma,sj}\): sine-component of first-order parallel flow
For j=0..M_THETA, \(u_{\theta,\sigma,cj}\): cosine-component of first-order poloidal flow
For j=0..M_THETA, \(u_{\theta,\sigma,sj}\): sine-component of first-order poloidal flow
For j=0..M_THETA, \(u_{\varphi,\sigma,cj}\): cosine-component of first-order toroidal flow
For j=0..M_THETA, \(u_{\varphi,\sigma,sj}\): sine-component of first-order toroidal flow