NEO Output Files

NEO output files are produced only if SILENT_FLAG = 0.

All NEO runtime information is written to out.neo.run.

Standard output files

Filename

Short description

out.neo.equil

Equilibrium/geometry input data

out.neo.f

First-order distribution function

out.neo.grid

Numerical grid parameters

out.neo.phi

Poloidal variation of first-order es potential

out.neo.theory

Neoclassical transport coefficients from analytic theory

out.neo.species

Mass and charge of all species

out.neo.theory_nclass

Neoclassical transport coefficients from the NCLASS code

out.neo.transport

Neoclassical transport coefficients from DKE solve

out.neo.transport_flux

Neoclassical fluxes in GB units from DKE solve

out.neo.transport_gv

Neoclassical fluxes from gyroviscosity

out.neo.vel

Poloidal variation of first-order flows

out.neo.vel_fourier

Poloidal variation of first-order flows (Fourier components)

Experimental profiles output files

Produced only if PROFILE_MODEL = 2.

Filename

Short description

out.neo.transport_exp

Neoclassical transport coefficients from DKE solve (in units)

out.neo.exp_norm

Normalizing experimental parameters (in units)

Rotation output files

Produced only if ROTATION_MODEL = 2.

Filename

Short description

out.neo.rotation

Strong rotation poloidal asymmetry parameters

Subroutine output

When neo is run in subroutine mode, the outputs are contained in a monolithic file named neo_interface. The NEO subroutine output parameters are as follows:

Parameter name

Short description

Normalization

neo_pflux_dke_out(1:11)

DKE solve particle flux

Γσ/(nnormvnorm)

neo_efluxtot_dke_out(1:11)

DKE solve energy flux

Qσ/(nnormvnormTnorm)

neo_efluxncv_dke_out(1:11)

DKE solve non-convective energy flux

(Qσω0Πσ)/(nnormvnormTnorm)

neo_mflux_dke_out(1:11)

DKE solve momentum flux

Πσ/(nnormTnormanorm)

neo_vpol_dke_out(1:11)

DKE solve poloidal flow

vθ,σ(θ=0)/vnorm

neo_vtor_dke_out(1:11)

DKE solve toroidal flow

vφ,σ(θ=0)/vnorm

neo_jpar_dke_out

DKE solve bootstrap current (parallel)

jB/(ennormvnormBunit)

neo_jtor_dke_out

DKE solve bootstrap current (toroidal)

jφ/R/1/R/(ennormvnorm)

neo_pflux_gv_out(1:11)

Gyroviscosity particle flux

Γσ/(nnormvnorm)

neo_efluxtot_gv_out(1:11)

Gyroviscosity energy flux

Qσ/(nnormvnormTnorm)

neo_efluxncv_gv_out(1:11)

Gyroviscosity non-convective energy flux

(Qσω0Πσ)/(nnormvnormTnorm)

neo_mflux_gv_out(1:11)

Gyroviscosity momentum flux

Πσ/(nnormTnormanorm)

neo_pflux_thHH_out

Hinton-Hazeltine ion particle flux

Γi/(nnormvnorm)

neo_eflux_thHHi_out

Hinton-Hazeltine ion energy flux

Qi/(nnormvnormTnorm)

neo_eflux_thHHe_out

Hinton-Hazeltine electron energy flux

Qe/(nnormvnormTnorm)

neo_eflux_thCHi_out

Chang-Hinton ion energy flux

Qi/(nnormvnormTnorm)

neo_pflux_thHS_out(1:11)

Hirshman-Sigmar particle flux

Γσ/(nnormvnorm)

neo_eflux_thS_out(1:11)

Hirshman-Sigmar energy flux

Qσ/(nnormvnormTnorm)

neo_jpar_thS_out

Sauter bootstrap current (parallel)

jB/(ennormvnormBunit)

neo_jtor_thS_out

Sauter bootstrap current (toroidal)

jφ/R/1/R/(ennormvnorm)

neo_pflux_nclass_out(1:11)

NCLASS solve particle flux

Γσ/(nnormvnorm)

neo_efluxtot_nclass_out(1:11)

NCLASS solve energy flux

Qσ/(nnormvnormTnorm)

neo_vpol_nclass_out(1:11)

NCLASS solve poloidal flow

vθ,σ(θ=0)/vnorm

neo_vtor_nclass_out(1:11)

NCLASS solve toroidal flow

vφ,σ(θ=0)/vnorm

neo_jpar_nclass_out

NCLASS solve bootstrap current (parallel)

jB/(ennormvnormBunit)


Detailed description of NEO output files

out.neo.equil

Description

Equilibrium/geometry input data

Format

Rectangular array of ASCII data:

  • rows: N_RADIAL

  • cols: 7+5×N_SPECIES

  1. r/a: normalized midplane minor radius

  2. (Φ0/r)(ae/Tnorm): normalized equilibrium-scale radial electric field

  3. q: safety factor

  4. ρ=(cmnormTnorm)/(eBunita): ratio of Larmor radius of normalizing species to the normalizing length

  5. R0/a: normalized flux-surface-center major radius

  6. ω0(a/vnorm): normalized toroidal angular frequency

  7. (dω0/dr)(a2/vnorm): normalized toroidal rotation shear

For each species σ:

  1. nσ/nnorm: normalized equilibrium-scale density

  2. Tσ/Tnorm: normalized equilibrium-scale temperature

  3. a/Lnσ=a(dlnnσ/dr): normalized equilibrium-scale density gradient scale length

  4. a/LTσ=a(dlnTσ/dr): normalized equilibrium-scale temperature gradient scale length

  5. τσσ1(a/vnorm): normalized collision frequency


out.neo.exp_norm

Description

Normalizing experimental parameters (in units)

Format

Rectangular array of ASCII data:

  • rows: N_RADIAL

  • cols: 7

  1. r/a: normalized midplane minor radius

  2. a: normalizing length (m)

  3. mnorm: normalizing mass (e-27 kg)

  4. nnorm: normalizing equilibrium-scale density (e19/m^3)

  5. Tnorm: normalizing equilibrium-scale temperature (keV)

  6. vnorm: normalizing thermal speed (m/s)

  7. Bunit: normalizing magnetic field (T)


out.neo.f

Description

First-order distribution function solution (dimensionless), specifically vector of g^a,ie,ix,it (first-order non-adiabatic distribution function for each species a), where

ga(r,θ,xa,ξ)=f0a(r,θ,xa)ie=0N_ENERGYix=0N_XILiek(ix)+1/2(xa2)Pix(ξ)g^a,ie,ix,it(θ)

where f0a is the zeroth-order distribution function (Maxwellian), Lie are associated Laguerre polynomials and Pix are Legendre polynomials, k(ix)=0 for ix=0 and k(ix)=1 for ix>0, ξ=v/v is the cosine of the pitch angle, and xa=v/2vta is the normalized energy.

Format

Vector of ASCII data:

  • (N_RADIAL)×(N_SPECIES)×(N_ENERGY+1)×(N_XI+1)×(N_THETA)


out.neo.grid

Description

Numerical grid parameters

Format

Vector of ASCII data:

  • 5+N_THETA+N_RADIAL

  1. N_SPECIES: number of kinetic species

  2. N_ENERGY: number of energy polynomials

  3. N_XI: number of ξ=v/v (cosine of pitch angle) polynomials

  4. N_THETA: number of theta gridpoints

  5. θj: theta gridpoints (j=1..N_THETA)

  6. N_RADIAL: number of radial gridpoints

  7. rj/a: normalized radial gridpoints (j=1..N_RADIAL)


out.neo.phi

Description

Neoclassical first-order electrostatic potential (normalized) vs. θ

Format

Rectangular array of ASCII data:

  • rows: N_RADIAL

  • cols: N_THETA

  1. eΦ1(θj)Tnorm: first-order electrostatic potential vs. θj (j=1…N_THETA)


out.neo.rotation

Description

Strong rotation poloidal asymmetry parameters (normalized)

Define:

  • Φ=Φ0Φ0(θ=0)

  • εσ=zσeTσmσω022Tσ[R2R2(θ=0)]

  • e0σ=eεσ

  • e1σ=eεσzσeΦTσ

  • e2σ=anormeεσzσeTσΦr

  • e3σ=1anorm2eεσ[R2R2(θ=0)]

  • e4σ=1anormeεσ[R2R2(θ=0)]r

  • e5σ=anormeεσlngranormeεσlngr

  • For anisotropic species, all temperatures are interpreted as T, the total energy is modified by εσεσ+λaniso,σ(r,θ), and we define the additional term e6σ=anormeεσλaniso,σr

  • FVσ=1e0σ[e2σ+e3σanorm3ω0vtσdω0dr+e4σanorm2ω022vtσ2+e1σanormdlnTσdre3σanorm3dlnTσdrω022vtσ2+e5σ+e6σ]

Format

Rectangular array of ASCII data:

  • rows: N_RADIAL

  • cols: 2+2×N_SPECIES+N_THETA+2×N_SPECIES×N_THETA

Fixed entries:

  1. r/a: normalized midplane minor radius

  2. eΦTnorm: difference between the flux-surface-averaged equilibrium-scale potential and the value at the outboard midplane (0 in the diamagnetic ordering limit)

For each species σ:

  1. 1e0σ=nσnσ: ratio of the density at the outboard midplane to the flux-surface-averaged equilibrium-scale density (1 in the diamagnetic ordering limit)

  2. FVσ: Factor related to the transformation of the particle flux convection (presently only valid in sα geometry)

For each θj, j=1..N_THETA

  1. eΦ(θj)Tnorm: difference between the equilibrium-scale potential and the value at the outboard midplane (0 in the diamagnetic ordering limit)

  2. nσ(θj)nσ(θ=0): poloidal variation of the equilibrium-scale density normalized to the value at the outboard midplane (1 in the diamagnetic ordering limit)


out.neo.species

Description

Mass and charge of all species

Format

Rectangular array of ASCII data:

  • cols: 2×N_SPECIES

  1. For each species σ:

    • mσ/mnorm: species mass (we suggest always taking deuterium as the normalizing mass)

    • zσ: species charge


out.neo.theory

Description

Neoclassical transport coefficients from analytic theory (normalized)

  • Only the Hirshman-Sigmar quantities are meaningful for multiple-ion species plasmas.

  • None of the theories are valid with strong rotation effects included.

Theory references

  • Hinton-Hazltine flows and fluxes: Rev. Mod. Phys., vol. 48, 239 (1976)

  • Chang-Hinton ion heat flux: Phys. Plasmas, vol. 25, 1493 (1982)

  • Taguchi ion heat flux (modified with Chang-Hinton collisional interpolation factor): PPCF, vol. 30, 1897 (1988)

  • Sauter et al. bootstrap current model: Phys. Plasmas, vol. 6, 2834 (1999)

  • Hinton-Rosenbluth potential: Phys. Fluids 16, 836 (1973)

  • Hirshman-Sigmar fluxes: Phys. Fluids, vol. 20, 418 (1977)

  • Koh et al. bootstrap current model: Phys. Plasmas, vol. 19, 072505 (2012)

Format

Rectangular array of ASCII data:

  • rows: N_RADIAL

  • cols: 17+2×N_SPECIES

  1. r/a: normalized midplane minor radius

  2. HH Γi/(nnormvnorm): Hinton-Hazeltine second-order radial particle flux (ambipolar)

  3. HH Qi/(nnormvnormTnorm): Hinton-Hazeltine second-order radial energy flux (ion)

  4. HH Qe/(nnormvnormTnorm): Hinton-Hazeltine second-order radial energy flux (electron)

  5. HH jB/(ennormvnormBunit): Hinton-Hazeltine first-order bootstrap current

  6. HH ki: Hinton-Hazeltine first-order dimensionless flow coefficient (ion)

  7. HH u,iB/(vnormBunit): Hinton-Hazeltine first-order parallel flow (ion)

  8. HH vθ,i(θ=0)/vnorm: Hinton-Hazeltine first-order poloidal flow at the outboard midplane (ion)

  9. CH Qi/(nnormvnormTnorm): Chang-Hinton second-order radial energy flux (ion)

  10. TG Qi/(nnormvnormTnorm): Taguchi second-order radial energy flux (ion)

  11. S jB/(ennormvnormBunit): Sauter first-order bootstrap current

  12. S ki: Sauter first-order dimensionless flow coefficient (ion)

  13. S u,iB/(vnormBunit): Sauter first-order parallel flow (ion)

  14. S vθ,i(θ=0)/vnorm: Sauter first-order poloidal flow at the outboard midplane (ion)

  15. HR (eΦ1/Tnorm)2: Hinton-Rosenbluth first-order electrostatic potential

  16. For each species σ:

    • HS Γσ/(nnormvnorm): Hirshman-Sigmar second-order radial particle flux

    • HS Qσ/(nnormvnormTnorm): Hirshman-Sigmar second-order radial energy flux

  1. K jB/(ennormvnormBunit): Koh first-order bootstrap current

  2. S jB/(ennormvnormBunit): Sauter first-order bootstrap current


out.neo.theory_nclass

Description

Neoclassical transport coefficients from the NCLASS code (normalized)

  • Only produced if SIM_MODEL = 1 or 3.

  • Note that for local mode (PROFILE_MODEL = 1), it is assumed in the NCLASS calculation that the normalizing mass is the mass of deuterium and that the input collision frequencies are self-consistent across all species.

  • NCLASS reference: W.A. Houlberg, et al, Phys. Plasmas, vol. 4, 3230 (1997)

Format

Rectangular array of ASCII data:

  • rows: N_RADIAL

  • cols: 2+5×N_SPECIES

  1. r/a: normalized midplane minor radius

  2. jB/(ennormvnormBunit): first-order bootstrap current

For each species σ:

  1. Γσ/(nnormvnorm): second-order radial particle flux

  2. Qσ/(nnormvnormTnorm): second-order radial energy flux

  3. u,σB/(vnormBunit): first-order parallel flow

  4. vθ,σ(θ=0)/vnorm: first-order poloidal flow at the outboard midplane

  5. vφ,σ(θ=0)/vnorm: first-order toroidal flow at the outboard midplane


out.neo.transport

Description

Neoclassical transport coefficients from DKE solve (normalized)

Format

Rectangular array of ASCII data:

  • rows: N_RADIAL

  • cols: 5+8×N_SPECIES

  1. r/a: normalized midplane minor radius

  2. (eΦ1/Tnorm)2: first-order electrostatic potential

  3. jB/(ennormvnormBunit): first-order bootstrap current

  4. vφ(0)(θ=0)/vnorm: zeroth-order toroidal flow at the outboard midplane (vφ(0)=ω0R)

  5. u(0)B/(vnormBunit): zeroth-order parallel flow (u(0)=ω0I/B)

For each species σ:

  1. Γσ/(nnormvnorm): second-order radial particle flux

  2. Qσ/(nnormvnormTnorm): second-order radial energy flux

  3. Πσ/(nnormTnormanorm): second-order radial momentum flux

  4. u,σB/(vnormBunit): first-order parallel flow

  5. kσ: first-order dimensionless flow coefficient

  6. Kσ/(nnormrmvnorm/Bunit): first-order dimensional flow coefficient

  7. vθ,σ(θ=0)/vnorm: first-order poloidal flow at the outboard midplane

  8. vφ,σ(θ=0)/vnorm: first-order toroidal flow at the outboard midplane


out.neo.transport_exp

Description

Neoclassical transport coefficients from DKE solve (in units)

Format

Rectangular array of ASCII data:

  • rows: N_RADIAL

  • cols: 5+8×N_SPECIES

  1. r: midplane minor radius (m)

  2. (Φ1)2: first-order electrostatic potential (V2)

  3. jB/Bunit: first-order bootstrap current (A/m2)

  4. vφ(0)(θ=0): zeroth-order toroidal flow at the outboard midplane (vφ(0)=ω0R) (m/s)

  5. u(0)B/Bunit: zeroth-order parallel flow (u(0)=ω0I/B) (m/s)

For each species σ:

  1. Γσ: second-order radial particle flux (e19m2s1)

  2. Qσ: second-order radial energy flux (W/m2)

  3. Πσ: second-order radial momentum flux (N/m)

  4. u,σB/Bunit: first-order parallel flow (m/s)

  5. kσ: first-order dimensionless flow coefficient

  6. Kσ: first-order dimensional flow coefficient (e19/(m2sT))

  7. vθ,σ(θ=0): first-order poloidal flow at the outboard midplane (m/s)

  8. vφ,σ(θ=0): first-order toroidal flow at the outboard midplane (m/s)


out.neo.transport_flux

Description

Neoclassical fluxes in GB units (defined below) from DKE solve

ΓGB=necs(ρs,unit/a)2QGB=necsTe(ρs,unit/a)2ΠGB=neTea(ρs,unit/a)2

where cs=Te/mD and ρs,unit=cseBunit/(mDc).

Format

Rectangular array of ASCII data:

  • rows: N_RADIAL×3×N_SPECIES

  • cols: 3

For each species σ:

  1. row of DKE (Γσ/ΓGB, Qσ/QGB, Πσ/ΠGB): second-order radial particle, energy, and momentum fluxes from DKE solve

For each species σ:

  1. row of GV (Γσ/ΓGB, Qσ/QGB, Πσ/ΠGB): second-order radial particle, energy, and momentum fluxes from gyroviscosity

For each species σ:

  1. row of TGYRO (Γσ/ΓGB, Qσ/QGB, Πσ/ΠGB): : second-order radial particle, energy, and momentum fluxes for transport equations


out.neo.transport_gv

Description

Neoclassical fluxes from gyroviscosity (normalized)

  • These fluxes are nonzero only for the case of combined sonic rotation with up-down asymmetric flux surfaces.

  • In the transport equations, these fluxes should be added to the fluxes from the DKE solve.

  • Reference: H. Sugama and W. Horton, Phys. Plasmas, vol. 4, 405 (1997).

Format

Rectangular array of ASCII data:

  • rows: N_RADIAL

  • cols: 1+3×N_SPECIES

  1. r/a: normalized midplane minor radius

For each species σ:

  1. Γgv,σ/(nnormvnorm): Gyroviscous second-order radial particle flux

  2. Qgv,σ/(nnormvnorm): Gyroviscous second-order radial energy flux

  3. Πgv,σ/(nnormTnormanorm): Gyroviscous second-order radial momentum flux


out.neo.vel

Description

Poloidal variation of first-order flows (normalized)

Format

Rectangular array of ASCII data:

  • rows: N_RADIAL

  • cols: N_SPECIES×N_THETA

For each species σ:

  1. u,σ(θj)/vnorm: first-order parallel flow vs. θj(j=1N_THETA)


out.neo.vel_fourier

Description

Poloidal variation of first-order flows (normalized) in Fourier series components

u(θ)=j=0N_THETAucjcos(jθ)+usjsin(jθ)

Format

Rectangular array of ASCII data:

  • rows: N_RADIAL

  • cols: N_SPECIES×6×(M_THETA+1) where M_THETA=N_THETA121

For each species σ:

  1. For j=0..M_THETA, u,σ,cj: cosine-component of first-order parallel flow

  2. For j=0..M_THETA, u,σ,sj: sine-component of first-order parallel flow

  3. For j=0..M_THETA, uθ,σ,cj: cosine-component of first-order poloidal flow

  4. For j=0..M_THETA, uθ,σ,sj: sine-component of first-order poloidal flow

  5. For j=0..M_THETA, uφ,σ,cj: cosine-component of first-order toroidal flow

  6. For j=0..M_THETA, uφ,σ,sj: sine-component of first-order toroidal flow