NEO Output Files

NEO output files are produced only if SILENT_FLAG = 0.

All NEO runtime information is written to out.neo.run.

Standard output files

Filename

Short description

out.neo.equil

Equilibrium/geometry input data

out.neo.f

First-order distribution function

out.neo.grid

Numerical grid parameters

out.neo.phi

Poloidal variation of first-order es potential

out.neo.theory

Neoclassical transport coefficients from analytic theory

out.neo.theory_nclass

Neoclassical transport coefficients from the NCLASS code

out.neo.transport

Neoclassical transport coefficients from DKE solve

out.neo.transport_flux

Neoclassical fluxes in GB units from DKE solve

out.neo.transport_gv

Neoclassical fluxes from gyroviscosity

out.neo.vel

Poloidal variation of first-order flows

out.neo.vel_fourier

Poloidal variation of first-order flows (Fourier components)

Experimental profiles output files

Produced only if PROFILE_MODEL = 2.

Filename

Short description

out.neo.transport_exp

Neoclassical transport coefficients from DKE solve (in units)

out.neo.exp_norm

Normalizing experimental parameters (in units)

Rotation output files

Produced only if ROTATION_MODEL = 2.

Filename

Short description

out.neo.rotation

Strong rotation poloidal asymmetry parameters

Subroutine output

When neo is run in subroutine mode, the outputs are contained in a monolithic file named neo_interface. The NEO subroutine output parameters are as follows:

Parameter name

Short description

Normalization

neo_pflux_dke_out(1:11)

DKE solve particle flux

\(\Gamma_{\sigma}/(n_{norm} {\rm v}_{norm})\)

neo_efluxtot_dke_out(1:11)

DKE solve energy flux

\(Q_{\sigma}/(n_{norm} {\rm v}_{norm} T_{norm})\)

neo_efluxncv_dke_out(1:11)

DKE solve non-convective energy flux

\(\left(Q_{\sigma}-\omega_0 \Pi_{\sigma}\right)/(n_{norm} {\rm v}_{norm} T_{norm})\)

neo_mflux_dke_out(1:11)

DKE solve momentum flux

\(\Pi_{\sigma}/(n_{norm} T_{norm} a_{norm})\)

neo_vpol_dke_out(1:11)

DKE solve poloidal flow

\({\rm v}_{\theta,\sigma}(\theta=0)/{\rm v}_{norm}\)

neo_vtor_dke_out(1:11)

DKE solve toroidal flow

\({\rm v}_{\varphi,\sigma}(\theta=0)/{\rm v}_{norm}\)

neo_jpar_dke_out

DKE solve bootstrap current (parallel)

\(\left< j_{\|} B \right>/(e n_{norm} {\rm v}_{norm} B_{unit})\)

neo_jtor_dke_out

DKE solve bootstrap current (toroidal)

\(\left< j_{\varphi} /R \right>/ \left< 1/R \right> / (e n_{norm} {\rm v}_{norm})\)

neo_pflux_gv_out(1:11)

Gyroviscosity particle flux

\(\Gamma_{\sigma}/(n_{norm} {\rm v}_{norm})\)

neo_efluxtot_gv_out(1:11)

Gyroviscosity energy flux

\(Q_{\sigma}/(n_{norm} {\rm v}_{norm} T_{norm})\)

neo_efluxncv_gv_out(1:11)

Gyroviscosity non-convective energy flux

\(\left(Q_{\sigma}-\omega_0 \Pi_{\sigma}\right)/(n_{norm} {\rm v}_{norm} T_{norm})\)

neo_mflux_gv_out(1:11)

Gyroviscosity momentum flux

\(\Pi_{\sigma}/(n_{norm} T_{norm} a_{norm})\)

neo_pflux_thHH_out

Hinton-Hazeltine ion particle flux

\(\Gamma_{i}/(n_{norm} {\rm v}_{norm})\)

neo_eflux_thHHi_out

Hinton-Hazeltine ion energy flux

\(Q_{i}/(n_{norm} {\rm v}_{norm} T_{norm})\)

neo_eflux_thHHe_out

Hinton-Hazeltine electron energy flux

\(Q_{e}/(n_{norm} {\rm v}_{norm} T_{norm})\)

neo_eflux_thCHi_out

Chang-Hinton ion energy flux

\(Q_{i}/(n_{norm} {\rm v}_{norm} T_{norm})\)

neo_pflux_thHS_out(1:11)

Hirshman-Sigmar particle flux

\(\Gamma_{\sigma}/(n_{norm} {\rm v}_{norm})\)

neo_eflux_thS_out(1:11)

Hirshman-Sigmar energy flux

\(Q_{\sigma}/(n_{norm} {\rm v}_{norm} T_{norm})\)

neo_jpar_thS_out

Sauter bootstrap current (parallel)

\(\left< j_{\|} B \right>/(e n_{norm} {\rm v}_{norm} B_{unit})\)

neo_jtor_thS_out

Sauter bootstrap current (toroidal)

\(\left< j_{\varphi} /R \right>/ \left< 1/R \right> / (e n_{norm} {\rm v}_{norm})\)

neo_pflux_nclass_out(1:11)

NCLASS solve particle flux

\(\Gamma_{\sigma}/(n_{norm} {\rm v}_{norm})\)

neo_efluxtot_nclass_out(1:11)

NCLASS solve energy flux

\(Q_{\sigma}/(n_{norm} {\rm v}_{norm} T_{norm})\)

neo_vpol_nclass_out(1:11)

NCLASS solve poloidal flow

\({\rm v}_{\theta,\sigma}(\theta=0)/{\rm v}_{norm}\)

neo_vtor_nclass_out(1:11)

NCLASS solve toroidal flow

\({\rm v}_{\varphi,\sigma}(\theta=0)/{\rm v}_{norm}\)

neo_jpar_nclass_out

NCLASS solve bootstrap current (parallel)

\(\left< j_{\|} B \right>/(e n_{norm} {\rm v}_{norm} B_{unit})\)


Detailed description of NEO output files

out.neo.equil

Description

Equilibrium/geometry input data

Format

Rectangular array of ASCII data:

  • rows: \(N\_RADIAL\)

  • cols: \(7 + 5 \times N\_SPECIES\)

  1. \(r/a\): normalized midplane minor radius

  2. \((\partial \Phi_{0}/\partial r)(a e/T_{norm})\): normalized equilibrium-scale radial electric field

  3. \(q\): safety factor

  4. \(\rho_* = (c \sqrt{m_{norm} T_{norm}})/(e B_{unit} a)\): ratio of Larmor radius of normalizing species to the normalizing length

  5. \(R_0/a\): normalized flux-surface-center major radius

  6. \(\omega_0 (a/{\rm v}_{norm})\): normalized toroidal angular frequency

  7. \((d \omega_0/dr)(a^2/{\rm v}_{norm})\): normalized toroidal rotation shear

For each species \(\sigma\):

  1. \(n_{\sigma}/n_{norm}\): normalized equilibrium-scale density

  2. \(T_{\sigma}/T_{norm}\): normalized equilibrium-scale temperature

  3. \(a/L_{n\sigma} = -a (d {\rm ln} n_{\sigma}/dr)\): normalized equilibrium-scale density gradient scale length

  4. \(a/L_{T\sigma} = -a (d {\rm ln} T_{\sigma}/dr)\): normalized equilibrium-scale temperature gradient scale length

  5. \(\tau_{\sigma\sigma}^{-1} (a/{\rm v}_{norm})\): normalized collision frequency


out.neo.exp_norm

Description

Normalizing experimental parameters (in units)

Format

Rectangular array of ASCII data:

  • rows: \(N\_RADIAL\)

  • cols: \(7\)

  1. \(r/a\): normalized midplane minor radius

  2. \(a\): normalizing length (m)

  3. \(m_{norm}\): normalizing mass (e-27 kg)

  4. \(n_{norm}\): normalizing equilibrium-scale density (e19/m^3)

  5. \(T_{norm}\): normalizing equilibrium-scale temperature (keV)

  6. \({\rm v}_{norm}\): normalizing thermal speed (m/s)

  7. \(B_{unit}\): normalizing magnetic field (T)


out.neo.f

Description

First-order distribution function solution (dimensionless), specifically vector of \(\hat{g}_{a,ie,ix,it}\) (first-order non-adiabatic distribution function for each species \(a\)), where

\[g_{a}(r,\theta,x_{a},\xi) = f_{0a}(r,\theta,x_a) \sum_{ie=0}^{N\_ENERGY} \sum_{ix=0}^{N\_XI} L_{ie}^{k(ix)+1/2}(x_a^2) P_{ix}(\xi) \hat{g}_{a,ie,ix,it}(\theta)\]

where \(f_{0a}\) is the zeroth-order distribution function (Maxwellian), \(L_{ie}\) are associated Laguerre polynomials and \(P_{ix}\) are Legendre polynomials, \(k(ix)=0\) for ix=0 and \(k(ix)=1\) for ix>0, \(\xi={\rm v}/{\rm v}_{\|}\) is the cosine of the pitch angle, and \(x_a = {\rm v}/\sqrt{2 {\rm v}_{ta}}\) is the normalized energy.

Format

Vector of ASCII data:

  • \((N\_RADIAL) \times (N\_SPECIES) \times (N\_ENERGY+1) \times (N\_XI+1) \times (N\_THETA\))


out.neo.grid

Description

Numerical grid parameters

Format

Vector of ASCII data:

  • \(5 + N\_THETA + N\_RADIAL\)

  1. \(N\_SPECIES\): number of kinetic species

  2. \(N\_ENERGY\): number of energy polynomials

  3. \(N\_XI\): number of \(\xi={\rm v}/{\rm v}_{\|}\) (cosine of pitch angle) polynomials

  4. \(N\_THETA\): number of theta gridpoints

  5. \(\theta_j\): theta gridpoints (j=1..N_THETA)

  6. \(N\_RADIAL\): number of radial gridpoints

  7. \(r_j/a\): normalized radial gridpoints (j=1..N_RADIAL)


out.neo.phi

Description

Neoclassical first-order electrostatic potential (normalized) vs. \(\theta\)

Format

Rectangular array of ASCII data:

  • rows: \(N\_RADIAL\)

  • cols: \(N\_THETA\)

  1. \(\frac{e \Phi_{1}(\theta_j)}{T_{norm}}\): first-order electrostatic potential vs. \(\theta_j\) (j=1…N_THETA)


out.neo.rotation

Description

Strong rotation poloidal asymmetry parameters (normalized)

Define:

  • \(\Phi_* = \Phi_0 - \Phi_0(\theta=0)\)

  • \(\varepsilon_\sigma = \frac{z_\sigma e}{T_\sigma} - \frac{m_\sigma \omega_0^2}{2 T_\sigma} [R^2 - R^2(\theta=0)]\)

  • \(e_{0\sigma} = \left< e^{-\varepsilon_\sigma} \right>\)

  • \(e_{1\sigma} = \left< e^{-\varepsilon_\sigma} \frac{z_\sigma e \Phi_*}{T_\sigma} \right>\)

  • \(e_{2\sigma} = a_{norm} \left< e^{-\varepsilon_\sigma} \frac{z_\sigma e}{T_\sigma} \frac{\partial \Phi_*}{\partial r} \right>\)

  • \(e_{3\sigma} = \frac{1}{a_{norm}^2} \left< e^{-\varepsilon_\sigma} [R^2 - R^2(\theta=0)] \right>\)

  • \(e_{4\sigma} = \frac{1}{a_{norm}} \left< e^{-\varepsilon_\sigma} \frac{\partial [R^2 - R^2(\theta=0)]}{\partial r} \right>\)

  • \(e_{5\sigma} = a_{norm} \left< e^{-\varepsilon_\sigma} \frac{\partial \ln \sqrt{g}}{\partial r} \right> - a_{norm} \left< e^{-\varepsilon_\sigma} \right> \left< \frac{\partial \ln \sqrt{g}}{\partial r} \right>\)

  • For anisotropic species, all temperatures are interpreted as \(T_{\|}\), the total energy is modified by \(\varepsilon_\sigma \rightarrow \varepsilon_\sigma + \lambda_{{\rm aniso},\sigma}(r,\theta)\), and we define the additional term \(e_{6\sigma} = -a_{norm} \left< e^{-\varepsilon_\sigma} \frac{\partial \lambda_{{\rm aniso},\sigma}}{\partial r} \right>\)

  • \(F_{V\sigma} = \frac{1}{e_{0\sigma}} \left[ -e_{2\sigma} + e_{3\sigma} a_{norm}^3 \frac{\omega_0}{{\rm v}_{t\sigma}} \frac{d \omega_0}{d r} + e_{4\sigma} a_{norm}^2 \frac{\omega_0^2}{2 {\rm v}_{t\sigma}^2} + e_{1\sigma} a_{norm} \frac{d \ln T_{\sigma}}{d r} - e_{3\sigma} a_{norm}^3 \frac{d \ln T_{\sigma}}{d r} \frac{\omega_0^2}{2 {\rm v}_{t\sigma}^2} + e_{5\sigma} + e_{6\sigma} \right]\)

Format

Rectangular array of ASCII data:

  • rows: \(N\_RADIAL\)

  • cols: \(2 + 2 \times N\_SPECIES + N\_THETA + 2 \times N\_SPECIES \times N\_THETA\)

Fixed entries:

  1. \(r/a\): normalized midplane minor radius

  2. \(\frac{e \left< \Phi_* \right>}{T_{norm}}\): difference between the flux-surface-averaged equilibrium-scale potential and the value at the outboard midplane (0 in the diamagnetic ordering limit)

For each species \(\sigma\):

  1. \(\frac{1}{e_{0\sigma}} = \frac{n_{\sigma}}{\left< n_{\sigma} \right>}\): ratio of the density at the outboard midplane to the flux-surface-averaged equilibrium-scale density (1 in the diamagnetic ordering limit)

  2. \(F_{V\sigma}\): Factor related to the transformation of the particle flux convection (presently only valid in \(s-\alpha\) geometry)

For each \(\theta_j\), j=1..N_THETA

  1. \(\frac{e \Phi_*(\theta_j)}{T_{norm}}\): difference between the equilibrium-scale potential and the value at the outboard midplane (0 in the diamagnetic ordering limit)

  2. \(\frac{n_{\sigma}(\theta_j)}{n_{\sigma}(\theta=0)}\): poloidal variation of the equilibrium-scale density normalized to the value at the outboard midplane (1 in the diamagnetic ordering limit)


out.neo.theory

Description

Neoclassical transport coefficients from analytic theory (normalized)

  • Only the Hirshman-Sigmar quantities are meaningful for multiple-ion species plasmas.

  • None of the theories are valid with strong rotation effects included.

  • Theory references:

    • Hinton-Hazltine flows and fluxes: Rev. Mod. Phys., vol. 48, 239 (1976).

    • Chang-Hinton ion heat flux: Phys. Plasmas, vol. 25, 1493 (1982).

    • Taguchi ion heat flux (modified with Chang-Hinton collisional interpolation factor): PPCF, vol. 30, 1897 (1988).

    • Sauter et al. bootstrap current model: Phys. Plasmas, vol. 6, 2834 (1999).

    • Hinton-Rosenbluth potential: Phys. Fluids 16, 836 (1973).

    • Hirshman-Sigmar fluxes: Phys. Fluids, vol. 20, 418 (1977).

    • Koh et al. bootstrap current model: Phys. Plasmas, vol. 19, 072505 (2012).

Format

Rectangular array of ASCII data:

  • rows: \(N\_RADIAL\)

  • cols: \(16 + 2 \times N\_SPECIES\)

  1. \(r/a\): normalized midplane minor radius

  2. HH \(\Gamma_{i}/(n_{norm} {\rm v}_{norm})\): Hinton-Hazeltine second-order radial particle flux (ambipolar)

  3. HH \(Q_{i}/(n_{norm} {\rm v}_{norm} T_{norm})\): Hinton-Hazeltine second-order radial energy flux (ion)

  4. HH \(Q_{e}/(n_{norm} {\rm v}_{norm} T_{norm})\): Hinton-Hazeltine second-order radial energy flux (electron)

  5. HH \(\left< j_{\|} B \right>/(e n_{norm} {\rm v}_{norm} B_{unit})\): Hinton-Hazeltine first-order bootstrap current

  6. HH \(k_{i}\): Hinton-Hazeltine first-order dimensionless flow coefficient (ion)

  7. HH \(\left< u_{\|,i} B \right>/({\rm v}_{norm} B_{unit})\): Hinton-Hazeltine first-order parallel flow (ion)

  8. HH \({\rm v}_{theta,i}(\theta=0)/{\rm v}_{norm}\): Hinton-Hazeltine first-order poloidal flow at the outboard midplane (ion)

  9. CH \(Q{i}/(n_{norm} {\rm v}_{norm} T_{norm})\): Chang-Hinton second-order radial energy flux (ion)

  10. TG \(Q{i}/(n_{norm} {\rm v}_{norm} T_{norm})\): Taguchi second-order radial energy flux (ion)

  11. S \(\left< j_{\|} B \right>/(e n_{norm} {\rm v}_{norm} B_{unit})\): Sauter first-order bootstrap current

  12. S \(k_{i}\): Sauter first-order dimensionless flow coefficient (ion)

  13. S \(\left< u_{\|,i} B \right>/({\rm v}_{norm} B_{unit})\): Sauter first-order parallel flow (ion)

  14. S \({\rm v}_{\theta,i}(\theta=0)/{\rm v}_{norm}\): Sauter first-order poloidal flow at the outboard midplane (ion)

  15. HR :math: left< (e Phi_1/T_{norm})^2 right>: Hinton-Rosenbluth first-order electrostatic potential

  16. For each species \(\sigma\):

    • HS \(\Gamma_{\sigma}/(n_{norm} {\rm v}_{norm})\): Hirshman-Sigmar second-order radial particle flux

    • HS \(Q_{\sigma}/(n_{norm} {\rm v}_{norm} T_{norm})\): Hirshman-Sigmar second-order radial energy flux

  1. K \(\left< j_{\|} B \right>/(e n_{norm} {\rm v}_{norm} B_{unit})\): Koh first-order bootstrap current


out.neo.theory_nclass

Description

Neoclassical transport coefficients from the NCLASS code (normalized)

  • Only produced if SIM_MODEL = 1 or 3.

  • Note that for local mode (PROFILE_MODEL = 1), it is assumed in the NCLASS calculation that the normalizing mass is the mass of deuterium and that the input collision frequencies are self-consistent across all species.

  • NCLASS reference: W.A. Houlberg, et al, Phys. Plasmas, vol. 4, 3230 (1997).

Format

Rectangular array of ASCII data:

  • rows: \(N\_RADIAL\)

  • cols: \(2 + 5 \times N\_SPECIES\)

  1. \(r/a\): normalized midplane minor radius

  2. \(\left< j_{\|} B \right>/(e n_{norm} {\rm v}_{norm} B_{unit})\): first-order bootstrap current

For each species \(\sigma\):

  1. \(\Gamma_{\sigma}/(n_{norm} {\rm v}_{norm})\): second-order radial particle flux

  2. \(Q_{\sigma}/(n_{norm} {\rm v}_{norm} T_{norm})\): second-order radial energy flux

  3. \(\left< u_{\|,\sigma} B \right>/({\rm v}_{norm} B_{unit})\): first-order parallel flow

  4. \({\rm v}_{\theta,\sigma}(\theta=0)/{\rm v}_{norm}\): first-order poloidal flow at the outboard midplane

  5. \({\rm v}_{\varphi,\sigma}(\theta=0)/{\rm v}_{norm}\): first-order toroidal flow at the outboard midplane


out.neo.transport

Description

Neoclassical transport coefficients from DKE solve (normalized)

Format

Rectangular array of ASCII data:

  • rows: \(N\_RADIAL\)

  • cols: \(5 + 8 \times N\_SPECIES\)

  1. \(r/a\): normalized midplane minor radius

  2. \(\left< (e \Phi_1/T_{norm} )^2 \right>\): first-order electrostatic potential

  3. \(\left< j_{\|} B \right>/(e n_{norm} {\rm v}_{norm} B_{unit})\): first-order bootstrap current

  4. \(v_{\varphi}^{(0)}(\theta=0)/{\rm v}_{norm}\): zeroth-order toroidal flow at the outboard midplane (\(v_{\varphi}^{(0)}=\omega_0 R\))

  5. \(\left< u_{\|}^{(0)} B \right>/({\rm v}_{norm} B_{unit})\): zeroth-order parallel flow (\(u_{\|}^{(0)}=\omega_0 I/B\))

For each species \(\sigma\):

  1. \(\Gamma_{\sigma}/(n_{norm} {\rm v}_{norm})\): second-order radial particle flux

  2. \(Q_{\sigma}/(n_{norm} {\rm v}_{norm} T_{norm})\): second-order radial energy flux

  3. \(\Pi_{\sigma}/(n_{norm} T_{norm} a_{norm})\): second-order radial momentum flux

  4. \(\left< u_{\|,\sigma} B \right>/({\rm v}_{norm} B_{unit})\): first-order parallel flow

  5. \(k_{\sigma}\): first-order dimensionless flow coefficient

  6. \(K_{\sigma}/(n_{norm} {rm v}_{norm}/B_{unit})\): first-order dimensional flow coefficient

  7. \({\rm v}_{\theta,\sigma}(\theta=0)/{\rm v}_{norm}\): first-order poloidal flow at the outboard midplane

  8. \({\rm v}_{\varphi,\sigma}(\theta=0)/{\rm v}_{norm}\): first-order toroidal flow at the outboard midplane


out.neo.transport_exp

Description

Neoclassical transport coefficients from DKE solve (in units)

Format

Rectangular array of ASCII data:

  • rows: \(N\_RADIAL\)

  • cols: \(5 + 8 \times N\_SPECIES\)

  1. \(r\): midplane minor radius (\(m\))

  2. \(\left< (\Phi_1)^2 \right>\): first-order electrostatic potential (\(V^2\))

  3. \(\left< j_{\|} B \right>/B_{unit}\): first-order bootstrap current (\(A/m^2\))

  4. \(v_{\varphi}^{(0)}(\theta=0)\): zeroth-order toroidal flow at the outboard midplane (\(v_{\varphi}^{(0)}=\omega_0 R\)) (\(m/s\))

  5. \(\left< u_{\|}^{(0)} B \right>/B_{unit}\): zeroth-order parallel flow (\(u_{\|}^{(0)}=\omega_0 I/B\)) (\(m/s\))

For each species \(\sigma\):

  1. \(\Gamma_{\sigma}\): second-order radial particle flux (\(e19 m^{-2} s^{-1}\))

  2. \(Q_{\sigma}\): second-order radial energy flux (\(W/m^2\))

  3. \(\Pi_{\sigma}\): second-order radial momentum flux (\(N/m\))

  4. \(\left< u_{\|,\sigma} B \right>/B_{unit}\): first-order parallel flow (\(m/s\))

  5. \(k_{\sigma}\): first-order dimensionless flow coefficient

  6. \(K_{\sigma}\): first-order dimensional flow coefficient (\(e19/(m^2 s T)\))

  7. \({\rm v}_{\theta,\sigma}(\theta=0)\): first-order poloidal flow at the outboard midplane (\(m/s\))

  8. \({\rm v}_{\varphi,\sigma}(\theta=0)\): first-order toroidal flow at the outboard midplane (\(m/s\))


out.neo.transport_flux

Description

Neoclassical fluxes in GB units from DKE solve

Define:

  • \(\Gamma_{GB} = \frac{\rho_{s,{\rm unit}}^2}{a^2} n_e c_s\)

  • \(Q_{GB} = \frac{\rho_{s,{\rm unit}}^2}{a^2} n_e c_s T_e\)

  • \(\Pi_{GB} = \frac{\rho_{s,{\rm unit}}^2}{a^2} n_e T_e a\)

where \(c_s=\sqrt{T_e/m_D}\) and \(\rho_{s,{\rm unit}}=\frac{c_s}{e B_{\rm unit}/(m_D c)}\)

Format

Rectangular array of ASCII data:

  • rows: \(N\_RADIAL \times 3 \times N\_SPECIES\)

  • cols: \(3\)

For each species \(\sigma\):

  1. row of DKE (\(\Gamma_{\sigma}/\Gamma_{GB}\), \(Q_{\sigma}/Q_{GB}\), \(\Pi_{\sigma}/\Pi_{GB}\)): second-order radial particle, energy, and momentum fluxes from DKE solve

For each species \(\sigma\):

  1. row of GV (\(\Gamma_{\sigma}/\Gamma_{GB}\), \(Q_{\sigma}/Q_{GB}\), \(\Pi_{\sigma}/\Pi_{GB}\)): second-order radial particle, energy, and momentum fluxes from gyroviscosity

For each species \(\sigma\):

  1. row of TGYRO (\(\Gamma_{\sigma}/\Gamma_{GB}\), \(Q_{\sigma}/Q_{GB}\), \(\Pi_{\sigma}/\Pi_{GB}\)): : second-order radial particle, energy, and momentum fluxes for transport equations


out.neo.transport_gv

Description

Neoclassical fluxes from gyroviscosity (normalized)

  • These fluxes are nonzero only for the case of combined sonic rotation with up-down asymmetric flux surfaces.

  • In the transport equations, these fluxes should be added to the fluxes from the DKE solve.

  • Reference: H. Sugama and W. Horton, Phys. Plasmas, vol. 4, 405 (1997).

Format

Rectangular array of ASCII data:

  • rows: \(N\_RADIAL\)

  • cols: \(1 + 3 \times N\_SPECIES\)

  1. \(r/a\): normalized midplane minor radius

For each species \(\sigma\):

  1. \(\Gamma_{gv,\sigma}/(n_{norm} {\rm v}_{norm})\): Gyroviscous second-order radial particle flux

  2. \(Q_{gv,\sigma}/(n_{norm} {\rm v}_{norm})\): Gyroviscous second-order radial energy flux

  3. \(\Pi_{gv,\sigma}/(n_{norm} T_{norm} a_{norm})\): Gyroviscous second-order radial momentum flux


out.neo.vel

Description

Poloidal variation of first-order flows (normalized)

Format

Rectangular array of ASCII data:

  • rows: \(N\_RADIAL\)

  • cols: \(N\_SPECIES \times N\_THETA\)

For each species \(\sigma\):

  1. \(u_{\|,\sigma}(\theta_j)/{\rm v}_{norm}\): first-order parallel flow vs. \(\theta_j\) (j=1..N_THETA)


out.neo.vel_fourier

Description

Poloidal variation of first-order flows (normalized) in Fourier series components

\[u(\theta) = \sum_{j=0}^{N\_THETA} u_{cj} \cos (j \theta) + u_{sj} \sin (j \theta)\]

Format

Rectangular array of ASCII data:

  • rows: \(N\_RADIAL\)

  • cols: \(N\_SPECIES \times 6 \times (M\_THETA + 1)\) where M_THETA = (N_THETA-1)/2-1

For each species \(\sigma\):

  1. For j=0..M_THETA, \(u_{\|,\sigma,cj}\): cosine-component of first-order parallel flow

  2. For j=0..M_THETA, \(u_{\|,\sigma,sj}\): sine-component of first-order parallel flow

  3. For j=0..M_THETA, \(u_{\theta,\sigma,cj}\): cosine-component of first-order poloidal flow

  4. For j=0..M_THETA, \(u_{\theta,\sigma,sj}\): sine-component of first-order poloidal flow

  5. For j=0..M_THETA, \(u_{\varphi,\sigma,cj}\): cosine-component of first-order toroidal flow

  6. For j=0..M_THETA, \(u_{\varphi,\sigma,sj}\): sine-component of first-order toroidal flow