Table of inputs and outputs
input.tglf parameter |
Interface parameter |
Short description |
Default |
---|---|---|---|
tglf_ns_in |
number of species including both electrons and ions |
2 |
|
tglf_use_transport_model_in |
.true. |
||
tglf_geometry_flag_in |
geometry type (0= \(s-\alpha\) , 1=Miller, 2=Fourier, 3=ELITE) |
1 |
|
tglf_use_bper_in |
include transverse magnetic fluctuations, \(\delta A_{\lVert }\) |
.false. |
|
tglf_use_bpar_in |
include compressional magnetic fluctuations, \(\delta B_{\lVert }\) |
.false. |
|
tglf_use_bisection_in |
use bisection search method to find width that maximizes growth rate |
.true. |
|
tglf_use_mhd_rule_in |
ignore pressure gradient contribution to curvature drift |
.true. |
|
tglf_use_inboard_detrapped_in |
Set trapped fraction to zero if eigenmode is inward ballooning |
.false. |
|
tglf_sat_rule_in |
0=default saturation rule |
0 |
|
tglf_kygrid_model_in |
1=standard ky spectrum for transport model, 0=user defined with NKY modes up to KY equal spaced |
1 |
|
tglf_xnu_model_in |
Collision model (2=new) |
2 |
|
tglf_vpar_model_in |
0=low-Mach-number limit |
0 |
|
tglf_vpar_shear_model_in |
deprecated parameter |
0 |
|
tglf_sign_bt_in |
sign of \(B_{T}\) with respect to CCW toroidal direction from top |
1.0 |
|
tglf_sign_it_in |
sign of \(I_{T}\) with respect to CCW toroidal direction from top |
1.0 |
|
tglf_ky_in |
\(k_{\theta }\rho _{s,{\rm {unit}}}\,\!\) for single-mode call to TGLF |
0.3 |
|
tglf_new_eikonal_in |
.true. = compute the eikonal, .false. = use the eikonal computed on the last call to TGLF made with tglf_new_eikonal_in = .true. |
.true. |
|
tglf_vexb_in |
normalized of ExB velocity Doppler shift common to all species (not in use, see VPAR) |
0.0 |
|
tglf_vexb_shear_in |
normalized toroidal ExB velocity Doppler shift gradient common to all species. For large ExB velocity ordering \(V_{tor}=V_{E\times B}\). VExB_shear \(=-SIGN(I_{tor}){\frac {r}{ABS(q)}}{\frac {\partial }{\partial r}}({\frac {V_{E\times B}}{R}})\frac {a}{c_{s}}\) |
0.0 |
|
tglf_betae_in |
\(\beta _{e}\,\!\) defined with respect to \(B_{\rm {unit}}\,\!\) |
0.0 |
|
tglf_xnue_in |
electron-ion collision frequency \({\frac {v_{ei}}{c_{s}/a}}\) |
0.0 |
|
tglf_zeff_in |
effective ion charge |
1.0 |
|
tglf_debye_in |
Debye length/gyroradius |
0.0 |
|
tglf_iflux_in |
compute quasilinear weights and mode amplitudes |
.true. |
|
tglf_ibranch_in |
0 = find two most unstable modes one for each sign of frequency, electron drift direction (1), ion drift direction (2), -1 = sort the unstable modes by growthrate in rank order |
-1 |
|
tglf_nmodes_in |
number of modes to store for tglf_ibranch_in = -1 |
2 |
|
tglf_nbasis_max_in |
maximum number of parallel basis functions |
4 |
|
tglf_nbasis_min_in |
minimum number of parallel basis functions |
2 |
|
tglf_nxgrid_in |
number of nodes in Gauss-Hermite quadrature |
16 |
|
tglf_nky_in |
number of poloidal modes in the high-k spectrum of TGLF_TM |
12 |
|
tglf_adiabatic_elec_in |
use adiabatic electrons |
.false. |
|
tglf_alpha_p_in |
multiplies parallel velocity shear for all species |
1.0 |
|
tglf_alpha_mach_in |
multiplies parallel velocity for all species |
0.0 |
|
tglf_alpha_e_in |
multiplies ExB velocity shear for spectral shift model |
1.0 |
|
tglf_alpha_quench_in |
1.0 = use quench rule, 0.0 = use new spectral shift model |
0.0 |
|
tglf_xnu_factor_in |
multiplies the trapped/passing boundary electron-ion collision terms |
1.0 |
|
tglf_debye_factor_in |
multiplies the debye length |
1.0 |
|
tglf_etg_factor_in |
exponent for ETG saturation rule |
1.25 |
|
tglf_write_wavefunction_flag_in |
Self-explanatory |
0 |
|
units_in |
units system used for SAT1 |
GYRO |
input.tglf parameter |
Interface parameter |
Short description |
Default |
---|---|---|---|
tglf_zs_in(:) |
species charge numbers |
-1.0,1.0 |
|
tglf_mass_in(:) |
species masses normalized to \(m_{D}\) |
me/md,1.0 |
|
tglf_rlns_in(:) |
species array of normalized density gradients \(-{\frac {a}{n_{s}}}{\frac {dn_{s}}{dr}}\) |
1.0,1.0 |
|
tglf_rlts_in(:) |
species array of normalized temperature gradients \(-{\frac {a}{T_{s}}}{\frac {dT_{s}}{dr}}\) |
3.0,3.0 |
|
tglf_taus_in(:) |
species array of temperatures \({\frac {T_{s}}{T_{e}}}\) |
1.0,1.0 |
|
tglf_as_in(:) |
species array of densities \({\frac {n_{s}}{n_{e}}}\) |
1.0,1.0 |
|
tglf_vpar_in(:) |
species array of parallel velocities \(SIGN(I_{tor}){\frac {R_{maj}V_{tor}}{Rc_{s}}}\) |
0.0,0.0 |
|
tglf_vpar_shear_in(:) |
normalized parallel velocity gradient \(-SIGN(I_{tor})R_{maj}{\frac {\partial }{\partial r}}({\frac {V_{tor}}{R}}){\frac {a}{c_{s}}}\) |
0.0,0.0 |
input.tglf parameter |
Interface parameter |
Short description |
Default |
---|---|---|---|
tglf_width_in |
maximum width of the Gaussian measure for the parallel Hermite polynomial basis |
1.65 |
|
tglf_width_min_in |
minimum width used in search for maximum growth rate |
0.3 |
|
tglf_nwidth_in |
maximum number of widths used in search for maximum growth rate |
21 |
|
tglf_find_width_in |
.true. = find the width that maximizes the growth rate, .false. = use width |
.true. |
input.tglf parameter |
Interface parameter |
Short description |
Default |
---|---|---|---|
tglf_rmin_loc_in |
flux surface centroid minor radius \(r/a\,\!\) |
0.5 |
|
tglf_rmaj_loc_in |
flux surface centroid major radius \(R_{maj}/a\,\!\) |
3.0 |
|
tglf_zmaj_loc_in |
flux surface centroid elevation \(Z_{maj}/a\,\!\) |
0.0 |
|
tglf_q_loc_in |
absolute value of the safety factor, \(ABS(q)\,\!\) |
2.0 |
|
tglf_q_prime_loc_in |
\({\frac {q^{2}a^{2}}{r^{2}}}s\) |
16.0 |
|
tglf_p_prime_loc_in |
\({\frac {qa^{2}}{rB_{unit}^{2}}}{\frac {\partial p}{\partial r}}\) |
0.0 |
|
tglf_drmindx_loc_in |
allows for x different than r \({\frac {\partial r}{\partial x}}\) |
1.0 |
|
tglf_drmajdx_loc_in |
\({\frac {\partial R_{maj}}{\partial x}}\) |
0.0 |
|
tglf_dzmajdx_loc_in |
\({\frac {\partial Z_{maj}}{\partial x}}\) |
0.0 |
|
tglf_kappa_loc_in |
elongation of flux surface, \(\kappa \,\!\) |
1.0 |
|
tglf_s_kappa_loc_in |
shear in elongation, \({\frac {r}{\kappa }}{\frac {\partial \kappa }{\partial r}}\) |
0.0 |
|
tglf_delta_loc_in |
0.0 |
||
tglf_s_delta_loc_in |
shear in triangularity, \(r{\frac {\partial \delta }{\partial r}}\) |
0.0 |
|
tglf_zeta_loc_in |
squareness, \(\zeta \,\!\) , of flux surface |
0.0 |
|
tglf_s_zeta_loc_in |
shear in squareness, \(r{\frac {\partial \zeta }{\partial r}}\) |
0.0 |
|
tglf_kx0_in |
kx0/ky ballooning mode offset |
0.0 |
input.tglf parameter |
Interface parameter |
Short description |
Default |
---|---|---|---|
tglf_rmin_sa_in |
normalized minor radius of flux surface \(r/a\,\!\) |
0.5 |
|
tglf_rmaj_sa_in |
normalized major radius of flux surface \(R_{maj}/a\,\!\) |
3.0 |
|
tglf_q_sa_in |
absolute value of safety factor |
2.0 |
|
tglf_shat_sa_in |
magnetic shear \({\frac {r}{q}}{\frac {\partial q}{\partial r}}\) |
1.0 |
|
tglf_alpha_sa_in |
normalized pressure gradient |
0.0 |
|
tglf_xwell_sa_in |
magnetic well |
0.0 |
|
tglf_theta0_sa_in |
\(\theta _{0}={\frac {k_{x}}{sk_{y}}}\) |
0.0 |
|
tglf_b_model_sa_in |
0/1 to exclude/include the B(theta) factor in k_per |
1 |
|
tglf_ft_model_sa_in |
1 uses trapped fraction at the outboard midplane |
1 |
input.tglf parameter |
Interface parameter |
Short description |
Default |
---|---|---|---|
tglf_theta_trapped_in |
parameter to adjust trapped fraction model |
0.7 |
|
tglf_park_in |
multiplies the parallel gradient term |
1.0 |
|
tglf_ghat_in |
multiplies the curvature drift closure terms |
1.0 |
|
tglf_gchat_in |
multiplies the curvature drift irreducible terms |
1.0 |
|
tglf_wd_zero_in |
cutoff for curvature drift eigenvalues to prevent zero |
0.1 |
|
tglf_linsker_factor_in |
multiplies the Linsker terms |
0.0 |
|
tglf_gradB_factor_in |
multiplies the gradB terms |
0.0 |
|
tglf_filter_in |
sets threshold for frequency/drift frequency to filter out non-driftwave instabilities |
2.0 |
Interface Parameter |
Definition |
Description |
---|---|---|
tglf_elec_pflux_out |
\(\overline{\Gamma_e}/\Gamma_{GB}\) |
Gyrobohm-normalized electron particle flux density |
tglf_elec_mflux_out |
\(\overline{\Pi_e}/\Pi_{GB}\) |
Gyrobohm-normalized electron angular momentum flux density |
tglf_elec_eflux_out |
\(\overline{Q_e}/Q_{GB}\) |
Gyrobohm-normalized electron energy flux density |
tglf_ion1_pflux_out |
\(\overline{\Gamma_1}/\Gamma_{GB}\) |
Gyrobohm-normalized main ion particle flux density |
tglf_ion1_mflux_out |
\(\overline{\Pi_1}/\Pi_{GB}\) |
Gyrobohm-normalized main ion angular momentum flux density |
tglf_ion1_eflux_out |
\(\overline{Q_1}/Q_{GB}\) |
Gyrobohm-normalized main ion energy flux density |
tglf_ion2_pflux_out |
\(\overline{\Gamma_2}/\Gamma_{GB}\) |
Gyrobohm-normalized 2nd ion particle flux density |
tglf_ion2_mflux_out |
\(\overline{\Pi_2}/\Pi_{GB}\) |
Gyrobohm-normalized 2nd ion angular momentum flux density |
tglf_ion2_eflux_out |
\(\overline{Q_2}/Q_{GB}\) |
Gyrobohm-normalized 2nd ion energy flux density |
out.tglf filename |
Short description |
---|---|
Gyro-bohm normalized density fluctuation amplitude spectra |
|
Gyro-bohm normalized eigenvalue spectra |
|
Gyro-bohm normalized field fluctuation intensity spectra per mode |
|
Gyro-bohm normalized intensity fluctuation amplitude spectra per mode |
|
density-temperature cross phase spectra per mode for each species |
|
QL weights per mode, species, field and type (type = particle, energy, toroidal stress, parallel stress, exchange) |
|
saturation model geometry factor per mode \({\frac {<\phi|\phi>}{<\phi| B^2/B_{unit}^2 |\phi>}}\) |
|
This output file has all of the scalar saturation parameters used for different settings of SAT_RULE, UNITS, ALPHA_ZF |
|
kx spectral shift model is used when ALPHA_QUENCH=0 and ALPHA_E=1.0. Note: The mode for the spectral shift, \(kx_e={\frac{<\phi| k_x/k_y |\phi>}{<\phi|\phi>}}\), depends on which saturation model is being used: SAT_RULE and UNITS settings |
|
flux spectrum summed over nmodes |
|
Gyro-bohm normalized temperature fluctuation amplitude spectra |